Cargando…

Study of nanoemulsions using carvacrol/MCT-(Oleic acid-potassium oleate)/ Tween 80 ®- water system by low energy method

Carvacrol is studied in different fields due to its microbial and antioxidant properties. Its use is limited because of the water insolubility and its strong taste. To overcome these problems, carvacrol has been successfully loaded into nanoemulsions. The low-energy emulsification method Phase Inver...

Descripción completa

Detalles Bibliográficos
Autores principales: Santamaría, Esther, Maestro, Alicia, Vilchez, Susana, González, Carme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276228/
https://www.ncbi.nlm.nih.gov/pubmed/37332948
http://dx.doi.org/10.1016/j.heliyon.2023.e16967
Descripción
Sumario:Carvacrol is studied in different fields due to its microbial and antioxidant properties. Its use is limited because of the water insolubility and its strong taste. To overcome these problems, carvacrol has been successfully loaded into nanoemulsions. The low-energy emulsification method Phase Inversion Composition (PIC) is used to prepare oil-in-water nanoemulsions in the carvacrol/medium chain triglycerides (MCT)-(oleic acid-potassium oleate/Tween 80 ®)-water system. Oleic acid acts as a co-surfactant when it is neutralized with KOH along the emulsification path changing the spontaneous curvature of the interface when increasing the HLB number from 1 for the oleic acid to 20 for the potassium oleate and, therefore, changing the HLB number of the surfactant mixture. The phases diagrams are studied in order to understand the behaviour of the system and to establish the composition range where nanoemulsions can be obtained. Nanoemulsions are formed when the emulsification path crosses a region of direct or planar structure without excess of oil. Experimental design is performed in order to study the influence of composition variables as carvacrol/MCT ratio and (oleic-oleate)/Tween 80 ® ratio (OL-OT/T80 ratio) on the diameter of the nanoemulsions and their stability. It has been observed the importance of the HLB number of the surfactants mixture in order to obtain small-sized stable nanoemulsions. Surface response graphic shows that (OL-OT)/T80 ratio is a significant parameter in the mean diameter of the nanoemulsions. A minimum diameter is obtained for a (OL-OT)/T80 ratio 45/55 due to the fact that ratio is near the preferred HLB of the oil mixture and the emulsification path contains a wide liquid crystal monophasic region with all the oil incorporated in the structure. Diameters of 19 nm for carvacrol/MCT ratio of 30/70 or diameters of 30 nm for ratios of 45/55 with high stability values presented a good potential to be incorporated into edible films in the future. Regarding nanoemulsions stability an optimum value is also observed for a carvacrol/MCT ratio. The addition of another carrier oil as olive oil instead of MCT showed an improvement of the nanoemulsions stability against Ostwald ripening, probably due to the smaller solubility of olive oil. The use of olive oil does not significantly change the diameter of the nanoemulsion.