Cargando…
Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study
BACKGROUND: Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop...
Autores principales: | Sun, Yi-Kang, Zhou, Bo-Yang, Miao, Yao, Shi, Yi-Lei, Xu, Shi-Hao, Wu, Dao-Ming, Zhang, Lei, Xu, Guang, Wu, Ting-Fan, Wang, Li-Fan, Yin, Hao-Hao, Ye, Xin, Lu, Dan, Han, Hong, Xiang, Li-Hua, Zhu, Xiao-Xiang, Zhao, Chong-Ke, Xu, Hui-Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276260/ https://www.ncbi.nlm.nih.gov/pubmed/37333662 http://dx.doi.org/10.1016/j.eclinm.2023.102027 |
Ejemplares similares
-
Machine learning prediction of prostate cancer from transrectal ultrasound video clips
por: Wang, Kai, et al.
Publicado: (2022) -
Transrectal ultrasound examination of prostate cancer guided by fusion imaging of multiparametric MRI and TRUS: avoiding unnecessary mpMRI-guided targeted biopsy
por: Xu, Guang, et al.
Publicado: (2022) -
Risk factors for infectious complications following transrectal ultrasound-guided prostate biopsy
por: Wu, Yu-Peng, et al.
Publicado: (2018) -
Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study
por: Zhou, Bo-Yang, et al.
Publicado: (2021) -
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022)