Cargando…
Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine
OBJECTIVE: Precision medicine requires reliable identification of variation in patient-level outcomes with different available treatments, often termed treatment effect heterogeneity. We aimed to evaluate the comparative utility of individualized treatment selection strategies based on predicted ind...
Autores principales: | Venkatasubramaniam, Ashwini, Mateen, Bilal A., Shields, Beverley M., Hattersley, Andrew T., Jones, Angus G., Vollmer, Sebastian J., Dennis, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276367/ https://www.ncbi.nlm.nih.gov/pubmed/37328784 http://dx.doi.org/10.1186/s12911-023-02207-2 |
Ejemplares similares
-
Identifying Good Responders to Glucose Lowering Therapy in Type 2 Diabetes: Implications for Stratified Medicine
por: Jones, Angus G., et al.
Publicado: (2014) -
Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data
por: Dennis, John M, et al.
Publicado: (2019) -
Future Roadmaps for Precision Medicine Applied to Diabetes: Rising to the Challenge of Heterogeneity
por: Bowman, P., et al.
Publicado: (2018) -
The disproportionate excess mortality risk of COVID-19 in younger people with diabetes warrants vaccination prioritisation
por: McGovern, Andrew P., et al.
Publicado: (2021) -
Evaluating associations between the benefits and risks of drug therapy in type 2 diabetes: a joint modeling approach
por: Dennis, John M, et al.
Publicado: (2018)