Cargando…

Role and clinical implication of autophagy in COVID-19

The ongoing coronavirus disease 2019 (COVID-19) pandemic constitutes a serious public health concern worldwide. Currently, more than 6 million deaths have occurred despite drastic containment measures, and this number is still increasing. Currently, no standard therapies for COVID-19 are available,...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Tianjiao, Li, Lan-ya, Yang, Jin-Ming, Cheng, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276507/
https://www.ncbi.nlm.nih.gov/pubmed/37328875
http://dx.doi.org/10.1186/s12985-023-02069-0
Descripción
Sumario:The ongoing coronavirus disease 2019 (COVID-19) pandemic constitutes a serious public health concern worldwide. Currently, more than 6 million deaths have occurred despite drastic containment measures, and this number is still increasing. Currently, no standard therapies for COVID-19 are available, which necessitates identifying effective preventive and therapeutic agents against COVID-19. However, developing new drugs and vaccines is a time-consuming process, and therefore, repurposing the existing drugs or redeveloping related targets seems to be the best strategy to develop effective therapeutics against COVID-19. Autophagy, a multistep lysosomal degradation pathway contributing to nutrient recycling and metabolic adaptation, is involved in the initiation and progression of numerous diseases as a part of an immune response. The key role of autophagy in antiviral immunity has been extensively studied. Moreover, autophagy can directly eliminate intracellular microorganisms by selective autophagy, that is, “xenophagy.” However, viruses have acquired diverse strategies to exploit autophagy for their infection and replication. This review aims to trigger the interest in the field of autophagy as an antiviral target for viral pathogens (with an emphasis on COVID-19). We base this hypothesis on summarizing the classification and structure of coronaviruses as well as the process of SARS-CoV-2 infection and replication; providing the common understanding of autophagy; reviewing interactions between the mechanisms of viral entry/replication and the autophagy pathways; and discussing the current state of clinical trials of autophagy-modifying drugs in the treatment of SARS-CoV-2 infection. We anticipate that this review will contribute to the rapid development of therapeutics and vaccines against COVID-19.