Cargando…
Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC?
There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, such as cross-validation or information criteria. Each of these par...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276628/ https://www.ncbi.nlm.nih.gov/pubmed/36810802 http://dx.doi.org/10.1093/sysbio/syad004 |
_version_ | 1785060118421831680 |
---|---|
author | Lartillot, Nicolas |
author_facet | Lartillot, Nicolas |
author_sort | Lartillot, Nicolas |
collection | PubMed |
description | There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, such as cross-validation or information criteria. Each of these paradigms raises specific computational challenges, but they also differ in their statistical meaning, being motivated by different objectives: either testing hypotheses or finding the best-approximating model. These alternative goals entail different compromises, and as a result, Bayes factors, cross-validation, and information criteria may be valid for addressing different questions. Here, the question of Bayesian model selection is revisited, with a focus on the problem of finding the best-approximating model. Several model selection approaches were re-implemented, numerically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically equivalent to leave-one-out cross-validation (LOO-CV). Using a combination of analytical results and empirical and simulation analyses, it is shown that Bayes factors are unduly conservative. In contrast, CV represents a more adequate formalism for selecting the model returning the best approximation of the data-generating process and the most accurate estimates of the parameters of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent represented by the wAIC, stand out as the best choices, conceptually and computationally, given that both can be simultaneously computed based on standard Markov chain Monte Carlo runs under the posterior distribution. [Bayes factor; cross-validation; marginal likelihood; model comparison; wAIC.] |
format | Online Article Text |
id | pubmed-10276628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102766282023-06-18 Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? Lartillot, Nicolas Syst Biol Regular Articles There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, such as cross-validation or information criteria. Each of these paradigms raises specific computational challenges, but they also differ in their statistical meaning, being motivated by different objectives: either testing hypotheses or finding the best-approximating model. These alternative goals entail different compromises, and as a result, Bayes factors, cross-validation, and information criteria may be valid for addressing different questions. Here, the question of Bayesian model selection is revisited, with a focus on the problem of finding the best-approximating model. Several model selection approaches were re-implemented, numerically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically equivalent to leave-one-out cross-validation (LOO-CV). Using a combination of analytical results and empirical and simulation analyses, it is shown that Bayes factors are unduly conservative. In contrast, CV represents a more adequate formalism for selecting the model returning the best approximation of the data-generating process and the most accurate estimates of the parameters of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent represented by the wAIC, stand out as the best choices, conceptually and computationally, given that both can be simultaneously computed based on standard Markov chain Monte Carlo runs under the posterior distribution. [Bayes factor; cross-validation; marginal likelihood; model comparison; wAIC.] Oxford University Press 2023-02-22 /pmc/articles/PMC10276628/ /pubmed/36810802 http://dx.doi.org/10.1093/sysbio/syad004 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Systematic Biologists. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Articles Lartillot, Nicolas Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? |
title | Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? |
title_full | Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? |
title_fullStr | Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? |
title_full_unstemmed | Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? |
title_short | Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? |
title_sort | identifying the best approximating model in bayesian phylogenetics: bayes factors, cross-validation or waic? |
topic | Regular Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276628/ https://www.ncbi.nlm.nih.gov/pubmed/36810802 http://dx.doi.org/10.1093/sysbio/syad004 |
work_keys_str_mv | AT lartillotnicolas identifyingthebestapproximatingmodelinbayesianphylogeneticsbayesfactorscrossvalidationorwaic |