Cargando…
Ocular surface immune cell diversity in dry eye disease
Dry eye disease (DED) is a multifactorial chronic ocular surface inflammatory condition. Disease severity has been directly related to the immuno-inflammatory status of the ocular surface. Any perturbation in the orchestrated functional harmony between the ocular surface structural cells and immune...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276724/ https://www.ncbi.nlm.nih.gov/pubmed/37026254 http://dx.doi.org/10.4103/IJO.IJO_2986_22 |
_version_ | 1785060138010279936 |
---|---|
author | Nair, Archana Padmanabhan D’Souza, Sharon Khamar, Pooja Nuijts, Rudy M M A Sethu, Swaminathan Shetty, Rohit |
author_facet | Nair, Archana Padmanabhan D’Souza, Sharon Khamar, Pooja Nuijts, Rudy M M A Sethu, Swaminathan Shetty, Rohit |
author_sort | Nair, Archana Padmanabhan |
collection | PubMed |
description | Dry eye disease (DED) is a multifactorial chronic ocular surface inflammatory condition. Disease severity has been directly related to the immuno-inflammatory status of the ocular surface. Any perturbation in the orchestrated functional harmony between the ocular surface structural cells and immune cells, both resident and trafficking ones, can adversely affect ocular surface health. The diversity and contribution of ocular surface immune cells in DED have been of interest for over a couple of decades. As is true with any mucosal tissue, the ocular surface harbors a variety of immune cells of the innate-adaptive continuum and some of which are altered in DED. The current review curates and organizes the knowledge related to the ocular surface immune cell diversity in DED. Ten different major immune cell types and 21 immune cell subsets have been studied in the context of DED in human subjects and in animal models. The most pertinent observations are increased ocular surface proportions of neutrophils, dendritic cells, macrophages, and T cell subsets (CD4+; CD8+; Th17) along with a decrease in T regulatory cells. Some of these cells have demonstrated disease-causal association with ocular surface health parameters such as OSDI score, Schirmer’s test-1, tear break-up time, and corneal staining. The review also summarizes various interventional strategies studied to modulate specific immune cell subsets and reduce DED severity. Further advancements would enable the use of ocular surface immune cell diversity, in patient stratification, i.e. DED-immunotypes, disease monitoring, and selective targeting to resolve the morbidity related to DED. |
format | Online Article Text |
id | pubmed-10276724 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-102767242023-06-18 Ocular surface immune cell diversity in dry eye disease Nair, Archana Padmanabhan D’Souza, Sharon Khamar, Pooja Nuijts, Rudy M M A Sethu, Swaminathan Shetty, Rohit Indian J Ophthalmol Review Article - Basic Sciences and Applied Research Dry eye disease (DED) is a multifactorial chronic ocular surface inflammatory condition. Disease severity has been directly related to the immuno-inflammatory status of the ocular surface. Any perturbation in the orchestrated functional harmony between the ocular surface structural cells and immune cells, both resident and trafficking ones, can adversely affect ocular surface health. The diversity and contribution of ocular surface immune cells in DED have been of interest for over a couple of decades. As is true with any mucosal tissue, the ocular surface harbors a variety of immune cells of the innate-adaptive continuum and some of which are altered in DED. The current review curates and organizes the knowledge related to the ocular surface immune cell diversity in DED. Ten different major immune cell types and 21 immune cell subsets have been studied in the context of DED in human subjects and in animal models. The most pertinent observations are increased ocular surface proportions of neutrophils, dendritic cells, macrophages, and T cell subsets (CD4+; CD8+; Th17) along with a decrease in T regulatory cells. Some of these cells have demonstrated disease-causal association with ocular surface health parameters such as OSDI score, Schirmer’s test-1, tear break-up time, and corneal staining. The review also summarizes various interventional strategies studied to modulate specific immune cell subsets and reduce DED severity. Further advancements would enable the use of ocular surface immune cell diversity, in patient stratification, i.e. DED-immunotypes, disease monitoring, and selective targeting to resolve the morbidity related to DED. Wolters Kluwer - Medknow 2023-04 2023-04-05 /pmc/articles/PMC10276724/ /pubmed/37026254 http://dx.doi.org/10.4103/IJO.IJO_2986_22 Text en Copyright: © 2023 Indian Journal of Ophthalmology https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Article - Basic Sciences and Applied Research Nair, Archana Padmanabhan D’Souza, Sharon Khamar, Pooja Nuijts, Rudy M M A Sethu, Swaminathan Shetty, Rohit Ocular surface immune cell diversity in dry eye disease |
title | Ocular surface immune cell diversity in dry eye disease |
title_full | Ocular surface immune cell diversity in dry eye disease |
title_fullStr | Ocular surface immune cell diversity in dry eye disease |
title_full_unstemmed | Ocular surface immune cell diversity in dry eye disease |
title_short | Ocular surface immune cell diversity in dry eye disease |
title_sort | ocular surface immune cell diversity in dry eye disease |
topic | Review Article - Basic Sciences and Applied Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276724/ https://www.ncbi.nlm.nih.gov/pubmed/37026254 http://dx.doi.org/10.4103/IJO.IJO_2986_22 |
work_keys_str_mv | AT nairarchanapadmanabhan ocularsurfaceimmunecelldiversityindryeyedisease AT dsouzasharon ocularsurfaceimmunecelldiversityindryeyedisease AT khamarpooja ocularsurfaceimmunecelldiversityindryeyedisease AT nuijtsrudymma ocularsurfaceimmunecelldiversityindryeyedisease AT sethuswaminathan ocularsurfaceimmunecelldiversityindryeyedisease AT shettyrohit ocularsurfaceimmunecelldiversityindryeyedisease |