Cargando…
Ion channels in dry eye disease
Dry eye disease (DED) which affects millions of people worldwide is an ocular surface disease that is strongly associated with pain, discomfort, and visual disturbances. Altered tear film dynamics, hyperosmolarity, ocular surface inflammation, and neurosensory abnormalities are the key contributors...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276728/ https://www.ncbi.nlm.nih.gov/pubmed/37026252 http://dx.doi.org/10.4103/IJO.IJO_3020_22 |
_version_ | 1785060138946658304 |
---|---|
author | Ashok, Nikhil Khamar, Pooja D’Souza, Sharon Gijs, Marlies Ghosh, Arkasubhra Sethu, Swaminathan Shetty, Rohit |
author_facet | Ashok, Nikhil Khamar, Pooja D’Souza, Sharon Gijs, Marlies Ghosh, Arkasubhra Sethu, Swaminathan Shetty, Rohit |
author_sort | Ashok, Nikhil |
collection | PubMed |
description | Dry eye disease (DED) which affects millions of people worldwide is an ocular surface disease that is strongly associated with pain, discomfort, and visual disturbances. Altered tear film dynamics, hyperosmolarity, ocular surface inflammation, and neurosensory abnormalities are the key contributors to DED pathogenesis. The presence of discordance between signs and symptoms of DED in patients and refractoriness to current therapies in some patients underpin the need for studying additional contributors that can be modulated. The presence of electrolytes or ions including sodium, potassium, chloride, bicarbonate, calcium, and magnesium in the tear fluid and ocular surface cells contribute to ocular surface homeostasis. Ionic or electrolyte imbalance and osmotic imbalance have been observed in DED and feed-forward interaction between ionic imbalances and inflammation alter cellular processes in the ocular surface resulting in DED. Ionic balances in various cellular and intercellular compartments are maintained by dynamic transport via ion channel proteins present in cell membranes. Hence, alterations in the expression and/or activity of about 33 types of ion channels that belong to voltage-gated channels, ligand-gated channels, mechanosensitive ion channel, aquaporins, chloride ion channel, sodium–potassium–chloride pumps or cotransporters have been investigated in the context of ocular surface health and DED in animal and/or human subjects. An increase in the expression or activity of TRPA1, TRPV1, Nav1.8, KCNJ6, ASIC1, ASIC3, P2X, P2Y, and NMDA receptor have been implicated in DED pathogenesis, whereas an increase in the expression or activity of TRPM8, GABA(A) receptor, CFTR, and NKA have been associated with resolution of DED. |
format | Online Article Text |
id | pubmed-10276728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-102767282023-06-18 Ion channels in dry eye disease Ashok, Nikhil Khamar, Pooja D’Souza, Sharon Gijs, Marlies Ghosh, Arkasubhra Sethu, Swaminathan Shetty, Rohit Indian J Ophthalmol Review Article - Basic Sciences and Applied Research Dry eye disease (DED) which affects millions of people worldwide is an ocular surface disease that is strongly associated with pain, discomfort, and visual disturbances. Altered tear film dynamics, hyperosmolarity, ocular surface inflammation, and neurosensory abnormalities are the key contributors to DED pathogenesis. The presence of discordance between signs and symptoms of DED in patients and refractoriness to current therapies in some patients underpin the need for studying additional contributors that can be modulated. The presence of electrolytes or ions including sodium, potassium, chloride, bicarbonate, calcium, and magnesium in the tear fluid and ocular surface cells contribute to ocular surface homeostasis. Ionic or electrolyte imbalance and osmotic imbalance have been observed in DED and feed-forward interaction between ionic imbalances and inflammation alter cellular processes in the ocular surface resulting in DED. Ionic balances in various cellular and intercellular compartments are maintained by dynamic transport via ion channel proteins present in cell membranes. Hence, alterations in the expression and/or activity of about 33 types of ion channels that belong to voltage-gated channels, ligand-gated channels, mechanosensitive ion channel, aquaporins, chloride ion channel, sodium–potassium–chloride pumps or cotransporters have been investigated in the context of ocular surface health and DED in animal and/or human subjects. An increase in the expression or activity of TRPA1, TRPV1, Nav1.8, KCNJ6, ASIC1, ASIC3, P2X, P2Y, and NMDA receptor have been implicated in DED pathogenesis, whereas an increase in the expression or activity of TRPM8, GABA(A) receptor, CFTR, and NKA have been associated with resolution of DED. Wolters Kluwer - Medknow 2023-04 2023-04-05 /pmc/articles/PMC10276728/ /pubmed/37026252 http://dx.doi.org/10.4103/IJO.IJO_3020_22 Text en Copyright: © 2023 Indian Journal of Ophthalmology https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Article - Basic Sciences and Applied Research Ashok, Nikhil Khamar, Pooja D’Souza, Sharon Gijs, Marlies Ghosh, Arkasubhra Sethu, Swaminathan Shetty, Rohit Ion channels in dry eye disease |
title | Ion channels in dry eye disease |
title_full | Ion channels in dry eye disease |
title_fullStr | Ion channels in dry eye disease |
title_full_unstemmed | Ion channels in dry eye disease |
title_short | Ion channels in dry eye disease |
title_sort | ion channels in dry eye disease |
topic | Review Article - Basic Sciences and Applied Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276728/ https://www.ncbi.nlm.nih.gov/pubmed/37026252 http://dx.doi.org/10.4103/IJO.IJO_3020_22 |
work_keys_str_mv | AT ashoknikhil ionchannelsindryeyedisease AT khamarpooja ionchannelsindryeyedisease AT dsouzasharon ionchannelsindryeyedisease AT gijsmarlies ionchannelsindryeyedisease AT ghosharkasubhra ionchannelsindryeyedisease AT sethuswaminathan ionchannelsindryeyedisease AT shettyrohit ionchannelsindryeyedisease |