Cargando…
Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs
This study employs a stacked ensemble machine learning approach to predict carbonate rocks' porosity and absolute permeability with various pore-throat distributions and heterogeneity. Our dataset consists of 2D slices from 3D micro-CT images of four carbonate core samples. The stacking ensembl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276879/ https://www.ncbi.nlm.nih.gov/pubmed/37330558 http://dx.doi.org/10.1038/s41598-023-36096-2 |
Sumario: | This study employs a stacked ensemble machine learning approach to predict carbonate rocks' porosity and absolute permeability with various pore-throat distributions and heterogeneity. Our dataset consists of 2D slices from 3D micro-CT images of four carbonate core samples. The stacking ensemble learning approach integrates predictions from several machine learning-based models into a single meta-learner model to accelerate the prediction and improve the model's generalizability. We used the randomized search algorithm to attain optimal hyperparameters for each model by scanning over a vast hyperparameter space. To extract features from the 2D image slices, we applied the watershed-scikit-image technique. We showed that the stacked model algorithm effectively predicts the rock's porosity and absolute permeability. |
---|