Cargando…
Predicting outcomes of acute kidney injury in critically ill patients using machine learning
Acute Kidney Injury (AKI) is a sudden episode of kidney failure that is frequently seen in critically ill patients. AKI has been linked to chronic kidney disease (CKD) and mortality. We developed machine learning-based prediction models to predict outcomes following AKI stage 3 events in the intensi...
Autores principales: | Nateghi Haredasht, Fateme, Viaene, Liesbeth, Pottel, Hans, De Corte, Wouter, Vens, Celine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277277/ https://www.ncbi.nlm.nih.gov/pubmed/37331979 http://dx.doi.org/10.1038/s41598-023-36782-1 |
Ejemplares similares
-
Validated risk prediction models for outcomes of acute kidney injury: a systematic review
por: Haredasht, Fateme Nateghi, et al.
Publicado: (2023) -
Comparison between Cystatin C- and Creatinine-Based Estimated Glomerular Filtration Rate in the Follow-Up of Patients Recovering from a Stage-3 AKI in ICU
por: Nateghi Haredasht, Fateme, et al.
Publicado: (2022) -
Machine learning model for predicting acute kidney injury progression in critically ill patients
por: Wei, Canzheng, et al.
Publicado: (2022) -
Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning
por: Shawwa, Khaled, et al.
Publicado: (2020) -
Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury
por: Li, Xunliang, et al.
Publicado: (2023)