Cargando…
The effects of layer-wise relevance propagation-based feature selection for EEG classification: a comparative study on multiple datasets
INTRODUCTION: The brain-computer interface (BCI) allows individuals to control external devices using their neural signals. One popular BCI paradigm is motor imagery (MI), which involves imagining movements to induce neural signals that can be decoded to control devices according to the user's...
Autores principales: | Nam, Hyeonyeong, Kim, Jun-Mo, Choi, WooHyeok, Bak, Soyeon, Kam, Tae-Eui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277566/ https://www.ncbi.nlm.nih.gov/pubmed/37342822 http://dx.doi.org/10.3389/fnhum.2023.1205881 |
Ejemplares similares
-
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023) -
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
por: Bach, Sebastian, et al.
Publicado: (2015) -
Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
por: Böhle, Moritz, et al.
Publicado: (2019) -
Layer-wise relevance propagation of InteractionNet explains protein–ligand interactions at the atom level
por: Cho, Hyeoncheol, et al.
Publicado: (2020) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020)