Cargando…

Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()

This study investigated a bio-inspired approach to planning optimal routes for urban hospital life channels to enable better responses to urban public security incidents. An experimental slime mold network and an origin–destination (OD) network model in which the nodes were tertiary hospitals in Wuh...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Gangyi, Wang, Yang, Cao, Xiaomao, Xu, Liquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277600/
https://www.ncbi.nlm.nih.gov/pubmed/37342573
http://dx.doi.org/10.1016/j.heliyon.2023.e17042
_version_ 1785060319123472384
author Tan, Gangyi
Wang, Yang
Cao, Xiaomao
Xu, Liquan
author_facet Tan, Gangyi
Wang, Yang
Cao, Xiaomao
Xu, Liquan
author_sort Tan, Gangyi
collection PubMed
description This study investigated a bio-inspired approach to planning optimal routes for urban hospital life channels to enable better responses to urban public security incidents. An experimental slime mold network and an origin–destination (OD) network model in which the nodes were tertiary hospitals in Wuhan were constructed. Correlation metrics of the two network models were used for network analysis and visualization. The experimental results showed that the slime mold network was better than the OD network in terms of global optimization. Furthermore, significant polarization of the influence value of urban hospital nodes resulted in a power-law distribution. This paper presents an urban planning method in which the biological mechanism of slime mold foraging is applied to construct shortest path networks in an emergency life channels. The results can be used to examine the relationship between urban roads and hospital nodes and the rational of global optimization distribution when planning the locations of new hospitals. A set of replicable and sustainable methods for conducting a biomimetic slime mold experiment to model real environments are presented. This approach provides a novel perspective for modeling emergency life channels.
format Online
Article
Text
id pubmed-10277600
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102776002023-06-20 Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks() Tan, Gangyi Wang, Yang Cao, Xiaomao Xu, Liquan Heliyon Research Article This study investigated a bio-inspired approach to planning optimal routes for urban hospital life channels to enable better responses to urban public security incidents. An experimental slime mold network and an origin–destination (OD) network model in which the nodes were tertiary hospitals in Wuhan were constructed. Correlation metrics of the two network models were used for network analysis and visualization. The experimental results showed that the slime mold network was better than the OD network in terms of global optimization. Furthermore, significant polarization of the influence value of urban hospital nodes resulted in a power-law distribution. This paper presents an urban planning method in which the biological mechanism of slime mold foraging is applied to construct shortest path networks in an emergency life channels. The results can be used to examine the relationship between urban roads and hospital nodes and the rational of global optimization distribution when planning the locations of new hospitals. A set of replicable and sustainable methods for conducting a biomimetic slime mold experiment to model real environments are presented. This approach provides a novel perspective for modeling emergency life channels. Elsevier 2023-06-12 /pmc/articles/PMC10277600/ /pubmed/37342573 http://dx.doi.org/10.1016/j.heliyon.2023.e17042 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Tan, Gangyi
Wang, Yang
Cao, Xiaomao
Xu, Liquan
Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()
title Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()
title_full Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()
title_fullStr Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()
title_full_unstemmed Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()
title_short Biomimetic method of emergency life channel urban planning in Wuhan using slime mold networks()
title_sort biomimetic method of emergency life channel urban planning in wuhan using slime mold networks()
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277600/
https://www.ncbi.nlm.nih.gov/pubmed/37342573
http://dx.doi.org/10.1016/j.heliyon.2023.e17042
work_keys_str_mv AT tangangyi biomimeticmethodofemergencylifechannelurbanplanninginwuhanusingslimemoldnetworks
AT wangyang biomimeticmethodofemergencylifechannelurbanplanninginwuhanusingslimemoldnetworks
AT caoxiaomao biomimeticmethodofemergencylifechannelurbanplanninginwuhanusingslimemoldnetworks
AT xuliquan biomimeticmethodofemergencylifechannelurbanplanninginwuhanusingslimemoldnetworks