Cargando…
Feature-based deep neural network approach for predicting mortality risk in patients with COVID-19
In this study, we integrate deep neural network (DNN) with hybrid approaches (feature selection and instance clustering) to build prediction models for predicting mortality risk in patients with COVID-19. Besides, we use cross-validation methods to evaluate the performance of these prediction models...
Autores principales: | Chang, Thing-Yuan, Huang, Cheng-Kui, Weng, Cheng-Hsiung, Chen, Jing-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277846/ https://www.ncbi.nlm.nih.gov/pubmed/37366394 http://dx.doi.org/10.1016/j.engappai.2023.106644 |
Ejemplares similares
-
Deep neural networks reveal novel sex-specific electrocardiographic features relevant for mortality risk
por: Siegersma, Klaske R, et al.
Publicado: (2022) -
Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network
por: Yeh, Joe Chao-Yuan, et al.
Publicado: (2021) -
Default risk prediction and feature extraction using a penalized deep neural network
por: Lin, Cunjie, et al.
Publicado: (2022) -
Feature Explanations in Recurrent Neural Networks for Predicting Risk of Mortality in Intensive Care Patients
por: Na Pattalung, Thanakron, et al.
Publicado: (2021) -
Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction
por: Cheng, Li-Hsin, et al.
Publicado: (2021)