Cargando…
HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury
BACKGROUND: Endometrial injury is considered the major cause of female infertility. Traditional therapies such as estrogen substitution therapy are not satisfactory due to individual variation in response to treatment, thereby warranting the use of alternative strategies such as stem cell therapy. T...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278240/ https://www.ncbi.nlm.nih.gov/pubmed/36121094 http://dx.doi.org/10.2174/1574888X17666220919111814 |
_version_ | 1785060440806522880 |
---|---|
author | Wu, Meixian Li, Yuanyuan Wang, Yiwei Li, Yifan Li, Jinghui Xie, Jing Zhao, Shuang Sun, Lihua |
author_facet | Wu, Meixian Li, Yuanyuan Wang, Yiwei Li, Yifan Li, Jinghui Xie, Jing Zhao, Shuang Sun, Lihua |
author_sort | Wu, Meixian |
collection | PubMed |
description | BACKGROUND: Endometrial injury is considered the major cause of female infertility. Traditional therapies such as estrogen substitution therapy are not satisfactory due to individual variation in response to treatment, thereby warranting the use of alternative strategies such as stem cell therapy. Transplantation of stem cells, such as umbilical cord mesenchymal stem cells (UCMSCs), has been shown to improve endometrial healing. However, due to the effect of the intrauterine environment, the therapeutic effect of UCMSCs is limited, and its efficacy is unstable. HOXA10, encoded by the HOXA10 gene, plays an important role in endometrium morphology maintenance, proliferation, differentiation, and embryo implantation. Moreover, UCMSCs do not show HOXA10 expression. OBJECTIVE: Our study aimed to evaluate the therapeutic effects of HOXA10-transfected UCMSCs on endometrial injury repair in vivo. METHODS: First, we established T10-UCMSCs (UCMSCs transfected with HOXA10) for transplantation. To establish the endometrial injury model, we injected 95% ethanol into the uterine cavity and transplanted T10-UCMSCs into the uterine cavity from the cornua uteri. Fourteen days later, uteri were collected for histological and biochemical analysis of endometrial growth and receptivity. RESULTS: Our results showed the endometrial receptivity was better in T10-UCMSCs group than in UCMSCs group, suggesting that HOXA10 could enhance the repairing ability of UCMSCs in the endometrium injury repair. More importantly, the fertility test showed that more embryos were implanted in the T10-UCMSCs group. CONCLUSION: Our results suggest that UCMSCs with HOXA10 expression could improve the therapeutic effects on endometrial injury repairing. |
format | Online Article Text |
id | pubmed-10278240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Bentham Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-102782402023-06-20 HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury Wu, Meixian Li, Yuanyuan Wang, Yiwei Li, Yifan Li, Jinghui Xie, Jing Zhao, Shuang Sun, Lihua Curr Stem Cell Res Ther Medicine, Regenerative Medicine, Biochemistry and Molecular Biology, Cell Biology BACKGROUND: Endometrial injury is considered the major cause of female infertility. Traditional therapies such as estrogen substitution therapy are not satisfactory due to individual variation in response to treatment, thereby warranting the use of alternative strategies such as stem cell therapy. Transplantation of stem cells, such as umbilical cord mesenchymal stem cells (UCMSCs), has been shown to improve endometrial healing. However, due to the effect of the intrauterine environment, the therapeutic effect of UCMSCs is limited, and its efficacy is unstable. HOXA10, encoded by the HOXA10 gene, plays an important role in endometrium morphology maintenance, proliferation, differentiation, and embryo implantation. Moreover, UCMSCs do not show HOXA10 expression. OBJECTIVE: Our study aimed to evaluate the therapeutic effects of HOXA10-transfected UCMSCs on endometrial injury repair in vivo. METHODS: First, we established T10-UCMSCs (UCMSCs transfected with HOXA10) for transplantation. To establish the endometrial injury model, we injected 95% ethanol into the uterine cavity and transplanted T10-UCMSCs into the uterine cavity from the cornua uteri. Fourteen days later, uteri were collected for histological and biochemical analysis of endometrial growth and receptivity. RESULTS: Our results showed the endometrial receptivity was better in T10-UCMSCs group than in UCMSCs group, suggesting that HOXA10 could enhance the repairing ability of UCMSCs in the endometrium injury repair. More importantly, the fertility test showed that more embryos were implanted in the T10-UCMSCs group. CONCLUSION: Our results suggest that UCMSCs with HOXA10 expression could improve the therapeutic effects on endometrial injury repairing. Bentham Science Publishers 2023-05-29 2023-05-29 /pmc/articles/PMC10278240/ /pubmed/36121094 http://dx.doi.org/10.2174/1574888X17666220919111814 Text en © 2023 Bentham Science Publishers https://creativecommons.org/licenses/by/4.0/© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode |
spellingShingle | Medicine, Regenerative Medicine, Biochemistry and Molecular Biology, Cell Biology Wu, Meixian Li, Yuanyuan Wang, Yiwei Li, Yifan Li, Jinghui Xie, Jing Zhao, Shuang Sun, Lihua HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury |
title | HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury |
title_full | HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury |
title_fullStr | HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury |
title_full_unstemmed | HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury |
title_short | HOXA10 Expressing UCMSCs Transplantation Improved Endometrial Receptivity on Endometrial Injury |
title_sort | hoxa10 expressing ucmscs transplantation improved endometrial receptivity on endometrial injury |
topic | Medicine, Regenerative Medicine, Biochemistry and Molecular Biology, Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278240/ https://www.ncbi.nlm.nih.gov/pubmed/36121094 http://dx.doi.org/10.2174/1574888X17666220919111814 |
work_keys_str_mv | AT wumeixian hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT liyuanyuan hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT wangyiwei hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT liyifan hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT lijinghui hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT xiejing hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT zhaoshuang hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury AT sunlihua hoxa10expressingucmscstransplantationimprovedendometrialreceptivityonendometrialinjury |