Cargando…
Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database
BACKGROUND: The study aims to evaluate the performance of three advanced machine learning algorithms and a traditional Cox proportional hazard (CoxPH) model in predicting the overall survival (OS) of patients with pancreatic neuroendocrine neoplasms (PNENs). METHOD: The clinicopathological dataset o...
Autores principales: | Jiang, Chen, Wang, Kan, Yan, Lizhao, Yao, Hailing, Shi, Huiying, Lin, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278508/ https://www.ncbi.nlm.nih.gov/pubmed/37165971 http://dx.doi.org/10.1002/cam4.5949 |
Ejemplares similares
-
Epidemiologic trends and survival of early-onset gastroenteropancreatic neuroendocrine neoplasms
por: Yao, Hailing, et al.
Publicado: (2023) -
Disadvantage of survival outcomes in widowed patients with colorectal neuroendocrine neoplasm: an analysis of surveillance, epidemiology and end results database
por: Li, Jing, et al.
Publicado: (2016) -
Do neuroendocrine carcinomas and mixed
neuroendocrine–non-neuroendocrine neoplasm of the gastrointestinal tract have
the same prognosis? A SEER database analysis of 12,878
cases
por: Shi, Huiying, et al.
Publicado: (2020) -
Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis
por: Yan, Lizhao, et al.
Publicado: (2022) -
Clinicopathological heterogeneity between primary and metastatic sites of gastroenteropancreatic neuroendocrine neoplasm
por: Shi, Huiying, et al.
Publicado: (2020)