Cargando…
Optimal navigation of a smart active particle: directional and distance sensing
ABSTRACT: We employ Q learning, a variant of reinforcement learning, so that an active particle learns by itself to navigate on the fastest path toward a target while experiencing external forces and flow fields. As state variables, we use the distance and direction toward the target, and as action...
Autores principales: | Putzke, Mischa, Stark, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279590/ https://www.ncbi.nlm.nih.gov/pubmed/37335344 http://dx.doi.org/10.1140/epje/s10189-023-00309-3 |
Ejemplares similares
-
Instability of a liquid sheet with viscosity contrast in inertial microfluidics
por: Patel, Kuntal, et al.
Publicado: (2021) -
A lattice Boltzmann study of particle settling in a fluctuating multicomponent fluid under confinement
por: Xue, Xiao, et al.
Publicado: (2021) -
Application of superstatistical analysis on fluctuant surface shear in particle-laden turbulence boundary layer
por: Li, Guang, et al.
Publicado: (2022) -
Revisiting the concept of activation in supercooled liquids
por: Baity-Jesi, Marco, et al.
Publicado: (2021) -
Active Ising Models of flocking: a field-theoretic approach
por: Scandolo, Mattia, et al.
Publicado: (2023)