Cargando…
A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection time...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279725/ https://www.ncbi.nlm.nih.gov/pubmed/37336914 http://dx.doi.org/10.1038/s41598-023-36832-8 |
_version_ | 1785060649655599104 |
---|---|
author | Mathew, Jino Kshirsagar, Rohit Abidin, Dzariff Z. Griffin, James Kanarachos, Stratis James, Jithin Alamaniotis, Miltiadis Fitzpatrick, Michael E. |
author_facet | Mathew, Jino Kshirsagar, Rohit Abidin, Dzariff Z. Griffin, James Kanarachos, Stratis James, Jithin Alamaniotis, Miltiadis Fitzpatrick, Michael E. |
author_sort | Mathew, Jino |
collection | PubMed |
description | The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection times and a high rate of false positives pose a significant hindrance in the deployment of PGAA-based systems to identify the presence of illicit substances in nuclear forensics. In the present work, six different machine-learning algorithms were developed to classify radioactive elements based on the PGAA energy spectra. The model performance was evaluated using standard classification metrics and trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, F1-score, Specificity, Confusion matrix, ROC-AUC curves, and Geometric Mean Score (GMS) measures. The tree-based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently outperformed Support Vector Machine and K-Nearest Neighbours. Based on the results presented, AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the high recall and minimal false negatives reported in the minority class. |
format | Online Article Text |
id | pubmed-10279725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102797252023-06-21 A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data Mathew, Jino Kshirsagar, Rohit Abidin, Dzariff Z. Griffin, James Kanarachos, Stratis James, Jithin Alamaniotis, Miltiadis Fitzpatrick, Michael E. Sci Rep Article The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection times and a high rate of false positives pose a significant hindrance in the deployment of PGAA-based systems to identify the presence of illicit substances in nuclear forensics. In the present work, six different machine-learning algorithms were developed to classify radioactive elements based on the PGAA energy spectra. The model performance was evaluated using standard classification metrics and trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, F1-score, Specificity, Confusion matrix, ROC-AUC curves, and Geometric Mean Score (GMS) measures. The tree-based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently outperformed Support Vector Machine and K-Nearest Neighbours. Based on the results presented, AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the high recall and minimal false negatives reported in the minority class. Nature Publishing Group UK 2023-06-19 /pmc/articles/PMC10279725/ /pubmed/37336914 http://dx.doi.org/10.1038/s41598-023-36832-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mathew, Jino Kshirsagar, Rohit Abidin, Dzariff Z. Griffin, James Kanarachos, Stratis James, Jithin Alamaniotis, Miltiadis Fitzpatrick, Michael E. A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
title | A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
title_full | A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
title_fullStr | A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
title_full_unstemmed | A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
title_short | A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
title_sort | comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279725/ https://www.ncbi.nlm.nih.gov/pubmed/37336914 http://dx.doi.org/10.1038/s41598-023-36832-8 |
work_keys_str_mv | AT mathewjino acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT kshirsagarrohit acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT abidindzariffz acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT griffinjames acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT kanarachosstratis acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT jamesjithin acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT alamaniotismiltiadis acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT fitzpatrickmichaele acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT mathewjino comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT kshirsagarrohit comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT abidindzariffz comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT griffinjames comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT kanarachosstratis comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT jamesjithin comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT alamaniotismiltiadis comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata AT fitzpatrickmichaele comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata |