Cargando…

A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data

The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection time...

Descripción completa

Detalles Bibliográficos
Autores principales: Mathew, Jino, Kshirsagar, Rohit, Abidin, Dzariff Z., Griffin, James, Kanarachos, Stratis, James, Jithin, Alamaniotis, Miltiadis, Fitzpatrick, Michael E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279725/
https://www.ncbi.nlm.nih.gov/pubmed/37336914
http://dx.doi.org/10.1038/s41598-023-36832-8
_version_ 1785060649655599104
author Mathew, Jino
Kshirsagar, Rohit
Abidin, Dzariff Z.
Griffin, James
Kanarachos, Stratis
James, Jithin
Alamaniotis, Miltiadis
Fitzpatrick, Michael E.
author_facet Mathew, Jino
Kshirsagar, Rohit
Abidin, Dzariff Z.
Griffin, James
Kanarachos, Stratis
James, Jithin
Alamaniotis, Miltiadis
Fitzpatrick, Michael E.
author_sort Mathew, Jino
collection PubMed
description The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection times and a high rate of false positives pose a significant hindrance in the deployment of PGAA-based systems to identify the presence of illicit substances in nuclear forensics. In the present work, six different machine-learning algorithms were developed to classify radioactive elements based on the PGAA energy spectra. The model performance was evaluated using standard classification metrics and trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, F1-score, Specificity, Confusion matrix, ROC-AUC curves, and Geometric Mean Score (GMS) measures. The tree-based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently outperformed Support Vector Machine and K-Nearest Neighbours. Based on the results presented, AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the high recall and minimal false negatives reported in the minority class.
format Online
Article
Text
id pubmed-10279725
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102797252023-06-21 A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data Mathew, Jino Kshirsagar, Rohit Abidin, Dzariff Z. Griffin, James Kanarachos, Stratis James, Jithin Alamaniotis, Miltiadis Fitzpatrick, Michael E. Sci Rep Article The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection times and a high rate of false positives pose a significant hindrance in the deployment of PGAA-based systems to identify the presence of illicit substances in nuclear forensics. In the present work, six different machine-learning algorithms were developed to classify radioactive elements based on the PGAA energy spectra. The model performance was evaluated using standard classification metrics and trend curves with an emphasis on comparing the effectiveness of algorithms that are best suited for classifying imbalanced datasets. We analyse the classification performance based on Precision, Recall, F1-score, Specificity, Confusion matrix, ROC-AUC curves, and Geometric Mean Score (GMS) measures. The tree-based algorithms (Decision Trees, Random Forest and AdaBoost) have consistently outperformed Support Vector Machine and K-Nearest Neighbours. Based on the results presented, AdaBoost is the preferred classifier to analyse data containing PGAA spectral information due to the high recall and minimal false negatives reported in the minority class. Nature Publishing Group UK 2023-06-19 /pmc/articles/PMC10279725/ /pubmed/37336914 http://dx.doi.org/10.1038/s41598-023-36832-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mathew, Jino
Kshirsagar, Rohit
Abidin, Dzariff Z.
Griffin, James
Kanarachos, Stratis
James, Jithin
Alamaniotis, Miltiadis
Fitzpatrick, Michael E.
A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
title A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
title_full A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
title_fullStr A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
title_full_unstemmed A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
title_short A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
title_sort comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279725/
https://www.ncbi.nlm.nih.gov/pubmed/37336914
http://dx.doi.org/10.1038/s41598-023-36832-8
work_keys_str_mv AT mathewjino acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT kshirsagarrohit acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT abidindzariffz acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT griffinjames acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT kanarachosstratis acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT jamesjithin acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT alamaniotismiltiadis acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT fitzpatrickmichaele acomparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT mathewjino comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT kshirsagarrohit comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT abidindzariffz comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT griffinjames comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT kanarachosstratis comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT jamesjithin comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT alamaniotismiltiadis comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata
AT fitzpatrickmichaele comparisonofmachinelearningmethodstoclassifyradioactiveelementsusingpromptgammarayneutronactivationdata