Cargando…
A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
The detection of illicit radiological materials is critical to establishing a robust second line of defence in nuclear security. Neutron-capture prompt-gamma activation analysis (PGAA) can be used to detect multiple radioactive materials across the entire Periodic Table. However, long detection time...
Autores principales: | Mathew, Jino, Kshirsagar, Rohit, Abidin, Dzariff Z., Griffin, James, Kanarachos, Stratis, James, Jithin, Alamaniotis, Miltiadis, Fitzpatrick, Michael E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279725/ https://www.ncbi.nlm.nih.gov/pubmed/37336914 http://dx.doi.org/10.1038/s41598-023-36832-8 |
Ejemplares similares
-
Prompt gamma rays from radiative capture of thermal neutrons
por: Greenwood, R C, et al.
Publicado: (1965) -
The Correlation between Vehicle Vertical Dynamics and Deep Learning-Based Visual Target State Estimation: A Sensitivity Study
por: Weber, Yannik, et al.
Publicado: (2019) -
CUPAC – The Coventry University public road dataset for automated cars
por: Weber, Yannik, et al.
Publicado: (2019) -
Measurements of prompt fission gamma-rays and neutrons with lanthanide halide scintillation detectors
por: Oberstedt, A, et al.
Publicado: (2014) -
Scientific Workshop on Nuclear Fission dynamics and the Emission of Prompt Neutrons and Gamma Rays
por: Hambsch, Franz-Josef, et al.
Publicado: (2015)