Cargando…
Explainable sequence-to-sequence GRU neural network for pollution forecasting
The goal of pollution forecasting models is to allow the prediction and control of the air quality. Non-linear data-driven approaches based on deep neural networks have been increasingly used in such contexts showing significant improvements w.r.t. more conventional approaches like regression models...
Autores principales: | Mirzavand Borujeni, Sara, Arras, Leila, Srinivasan, Vignesh, Samek, Wojciech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279754/ https://www.ncbi.nlm.nih.gov/pubmed/37336995 http://dx.doi.org/10.1038/s41598-023-35963-2 |
Ejemplares similares
-
Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks
por: Mahjoub, Sameh, et al.
Publicado: (2022) -
CNN-GRU-AM for Shared Bicycles Demand Forecasting
por: Peng, Yali, et al.
Publicado: (2021) -
Mine Gas Concentration Forecasting
Model Based on an Optimized BiGRU Network
por: Liang, Rong, et al.
Publicado: (2020) -
Simulation of Nanopore Sequencing Signals Based on BiGRU
por: Chen, Weigang, et al.
Publicado: (2020) -
DTTrans: PV Power Forecasting Using Delaunay Triangulation and TransGRU
por: Song, Keunju, et al.
Publicado: (2022)