Cargando…
PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs
Traditional supervised learning methods require large quantities of labeled data. However, labeling sleep data according to polysomnography by well-trained sleep experts is a very tedious job. In the present day, the development of self-supervised learning methods is making significant progress in m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279883/ https://www.ncbi.nlm.nih.gov/pubmed/37346085 http://dx.doi.org/10.3389/fnins.2023.1167723 |
_version_ | 1785060684689571840 |
---|---|
author | You, Yuyang Chang, Shuohua Yang, Zhihong Sun, Qihang |
author_facet | You, Yuyang Chang, Shuohua Yang, Zhihong Sun, Qihang |
author_sort | You, Yuyang |
collection | PubMed |
description | Traditional supervised learning methods require large quantities of labeled data. However, labeling sleep data according to polysomnography by well-trained sleep experts is a very tedious job. In the present day, the development of self-supervised learning methods is making significant progress in many fields. It is also possible to apply some of these methods to sleep staging. This is to remove the dependency on labeled data at the stage of representation extraction. Nevertheless, they often rely too much on negative samples for sample selection and construction. Therefore, we propose PSNSleep, a novel self-supervised learning method for sleep staging based on Siamese networks. The crucial step to the success of our method is to select appropriate data augmentations (the time shift block) to construct the positive sample pair. PSNSleep achieves satisfactory results without relying on any negative samples. We evaluate PSNSleep on Sleep-EDF and ISRUC-Sleep and achieve accuracy of 80.0% and 74.4%. The source code is publicly available at https://github.com/arthurxl/PSNSleep. |
format | Online Article Text |
id | pubmed-10279883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102798832023-06-21 PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs You, Yuyang Chang, Shuohua Yang, Zhihong Sun, Qihang Front Neurosci Neuroscience Traditional supervised learning methods require large quantities of labeled data. However, labeling sleep data according to polysomnography by well-trained sleep experts is a very tedious job. In the present day, the development of self-supervised learning methods is making significant progress in many fields. It is also possible to apply some of these methods to sleep staging. This is to remove the dependency on labeled data at the stage of representation extraction. Nevertheless, they often rely too much on negative samples for sample selection and construction. Therefore, we propose PSNSleep, a novel self-supervised learning method for sleep staging based on Siamese networks. The crucial step to the success of our method is to select appropriate data augmentations (the time shift block) to construct the positive sample pair. PSNSleep achieves satisfactory results without relying on any negative samples. We evaluate PSNSleep on Sleep-EDF and ISRUC-Sleep and achieve accuracy of 80.0% and 74.4%. The source code is publicly available at https://github.com/arthurxl/PSNSleep. Frontiers Media S.A. 2023-06-06 /pmc/articles/PMC10279883/ /pubmed/37346085 http://dx.doi.org/10.3389/fnins.2023.1167723 Text en Copyright © 2023 You, Chang, Yang and Sun. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience You, Yuyang Chang, Shuohua Yang, Zhihong Sun, Qihang PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs |
title | PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs |
title_full | PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs |
title_fullStr | PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs |
title_full_unstemmed | PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs |
title_short | PSNSleep: a self-supervised learning method for sleep staging based on Siamese networks with only positive sample pairs |
title_sort | psnsleep: a self-supervised learning method for sleep staging based on siamese networks with only positive sample pairs |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279883/ https://www.ncbi.nlm.nih.gov/pubmed/37346085 http://dx.doi.org/10.3389/fnins.2023.1167723 |
work_keys_str_mv | AT youyuyang psnsleepaselfsupervisedlearningmethodforsleepstagingbasedonsiamesenetworkswithonlypositivesamplepairs AT changshuohua psnsleepaselfsupervisedlearningmethodforsleepstagingbasedonsiamesenetworkswithonlypositivesamplepairs AT yangzhihong psnsleepaselfsupervisedlearningmethodforsleepstagingbasedonsiamesenetworkswithonlypositivesamplepairs AT sunqihang psnsleepaselfsupervisedlearningmethodforsleepstagingbasedonsiamesenetworkswithonlypositivesamplepairs |