Cargando…
A Hybrid EEG-based Emotion Recognition Approach Using Wavelet Convolutional Neural Networks and Support Vector Machine
INTRODUCTION: Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool, which makes the processing procedure integrated, but in some situations, this processing tool requires to be fused with machi...
Autores principales: | Bagherzadeh, Sara, Maghooli, Keivan, Shalbaf, Ahmad, Maghsoudi, Arash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Iranian Neuroscience Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10279985/ https://www.ncbi.nlm.nih.gov/pubmed/37346875 http://dx.doi.org/10.32598/bcn.2021.3133.1 |
Ejemplares similares
-
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
por: Maghsoudi, Arash, et al.
Publicado: (2021) -
Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals
por: Maghsoudi, Arash, et al.
Publicado: (2022) -
Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine
por: Moteghaed, Niloofar Yousefi, et al.
Publicado: (2018) -
EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms
por: Zangeneh Soroush, Morteza, et al.
Publicado: (2022) -
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
por: Phan, Tran-Dac-Thinh, et al.
Publicado: (2021)