Cargando…
Using self-supervised feature learning to improve the use of pulse oximeter signals to predict paediatric hospitalization
Background: The success of many machine learning applications depends on knowledge about the relationship between the input data and the task of interest (output), hindering the application of machine learning to novel tasks. End-to-end deep learning, which does not require intermediate feature engi...
Autores principales: | Mwaniki, Paul, Kamanu, Timothy, Akech, Samuel, Dunsmuir, Dustin, Ansermino, J. Mark, Eijkemans, M.J.C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280037/ https://www.ncbi.nlm.nih.gov/pubmed/37346816 http://dx.doi.org/10.12688/wellcomeopenres.17148.2 |
Ejemplares similares
-
Using Machine Learning Methods Incorporating Individual Reader Annotations to Classify Paediatric Chest Radiographs in Epidemiological Studies
por: Mwaniki, Paul, et al.
Publicado: (2022) -
Design and Evaluation of a Low-Cost Smartphone Pulse Oximeter
por: Petersen, Christian L., et al.
Publicado: (2013) -
Derivation and internal validation of a data-driven prediction model to guide frontline health workers in triaging children under-five in Nairobi, Kenya
por: Mawji, Alishah, et al.
Publicado: (2021) -
P074 Three models of pulse oximeters are within specifications when assessed using a benchtop pulse oximeter simulator
por: McDermott, E, et al.
Publicado: (2022) -
Repeatability of Pulse Oximetry Measurements in Children During Triage in 2 Ugandan Hospitals
por: Asdo, Ahmad, et al.
Publicado: (2023)