Cargando…
A hybrid anomaly detection method for high dimensional data
Anomaly detection of high-dimensional data is a challenge because the sparsity of the data distribution caused by high dimensionality hardly provides rich information distinguishing anomalous instances from normal instances. To address this, this article proposes an anomaly detection method combinin...
Autores principales: | Zhang, Xin, Wei, Pingping, Wang, Qingling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280180/ https://www.ncbi.nlm.nih.gov/pubmed/37346598 http://dx.doi.org/10.7717/peerj-cs.1199 |
Ejemplares similares
-
Multiresolution dendritic cell algorithm for network anomaly detection
por: Limon-Cantu, David, et al.
Publicado: (2021) -
High-dimensional normalized data profiles for testing derivative-free optimization algorithms
por: Musafer, Hassan, et al.
Publicado: (2022) -
Design of feature selection algorithm for high-dimensional network data based on supervised discriminant projection
por: Zhang, Zongfu, et al.
Publicado: (2023) -
Novel hybrid firefly algorithm: an application to enhance XGBoost tuning for intrusion detection classification
por: Zivkovic, Miodrag, et al.
Publicado: (2022) -
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
por: Kamat, Pooja Vinayak, et al.
Publicado: (2021)