Cargando…
A super-resolution network using channel attention retention for pathology images
Image super-resolution (SR) significantly improves the quality of low-resolution images, and is widely used for image reconstruction in various fields. Although the existing SR methods have achieved distinguished results in objective metrics, most methods focus on real-world images and employ large...
Autores principales: | Jia, Feiyang, Tan, Li, Wang, Ge, Jia, Caiyan, Chen, Zhineng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280234/ https://www.ncbi.nlm.nih.gov/pubmed/37346623 http://dx.doi.org/10.7717/peerj-cs.1196 |
Ejemplares similares
-
Spatiotemporal Clustering of Repeated Super-Resolution Localizations via Linear Assignment Problem
por: Schodt, David J., et al.
Publicado: (2021) -
Corrigendum: Spatiotemporal Clustering of Repeated Super-Resolution Localizations via Linear Assignment Problem
por: Schodt, David J., et al.
Publicado: (2022) -
Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs
por: Shinde, Sumeet, et al.
Publicado: (2021) -
Optimization technique for increasing resolution in computed tomography imaging
por: Grossu, I.V., et al.
Publicado: (2023) -
Edge-Enhanced with Feedback Attention Network for Image Super-Resolution
por: Fu, Chunmei, et al.
Publicado: (2021)