Cargando…
BatTS: a hybrid method for optimizing deep feedforward neural network
Deep feedforward neural networks (DFNNs) have attained remarkable success in almost every computational task. However, the selection of DFNN architecture is still based on handcraft or hit-and-trial methods. Therefore, an essential factor regarding DFNN is about designing its architecture. Unfortuna...
Autores principales: | Pan, Sichen, Gupta, Tarun Kumar, Raza, Khalid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280266/ https://www.ncbi.nlm.nih.gov/pubmed/37346535 http://dx.doi.org/10.7717/peerj-cs.1194 |
Ejemplares similares
-
Hybrid morphological-convolutional neural networks for computer-aided diagnosis
por: Canales-Fiscal, Martha Rebeca, et al.
Publicado: (2023) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
An Interactive Visualization for Feature Localization in Deep Neural Networks
por: Zurowietz, Martin, et al.
Publicado: (2020) -
Configural relations in humans and deep convolutional neural networks
por: Baker, Nicholas, et al.
Publicado: (2023) -
Cosmic Ray Background Removal With Deep Neural Networks in SBND
por: Acciarri, R., et al.
Publicado: (2021)