Cargando…

Bottom-up and top-down paradigms of artificial intelligence research approaches to healthcare data science using growing real-world big data

OBJECTIVES: As the real-world electronic health record (EHR) data continue to grow exponentially, novel methodologies involving artificial intelligence (AI) are becoming increasingly applied to enable efficient data-driven learning and, ultimately, to advance healthcare. Our objective is to provide...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Michelle, Sushil, Madhumita, Miao, Brenda Y, Butte, Atul J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280344/
https://www.ncbi.nlm.nih.gov/pubmed/37187158
http://dx.doi.org/10.1093/jamia/ocad085
Descripción
Sumario:OBJECTIVES: As the real-world electronic health record (EHR) data continue to grow exponentially, novel methodologies involving artificial intelligence (AI) are becoming increasingly applied to enable efficient data-driven learning and, ultimately, to advance healthcare. Our objective is to provide readers with an understanding of evolving computational methods and help in deciding on methods to pursue. TARGET AUDIENCE: The sheer diversity of existing methods presents a challenge for health scientists who are beginning to apply computational methods to their research. Therefore, this tutorial is aimed at scientists working with EHR data who are early entrants into the field of applying AI methodologies. SCOPE: This manuscript describes the diverse and growing AI research approaches in healthcare data science and categorizes them into 2 distinct paradigms, the bottom-up and top-down paradigms to provide health scientists venturing into artificial intelligent research with an understanding of the evolving computational methods and help in deciding on methods to pursue through the lens of real-world healthcare data.