Cargando…
Deployment of machine learning algorithms to predict sepsis: systematic review and application of the SALIENT clinical AI implementation framework
OBJECTIVE: To retrieve and appraise studies of deployed artificial intelligence (AI)-based sepsis prediction algorithms using systematic methods, identify implementation barriers, enablers, and key decisions and then map these to a novel end-to-end clinical AI implementation framework. MATERIALS AND...
Autores principales: | van der Vegt, Anton H, Scott, Ian A, Dermawan, Krishna, Schnetler, Rudolf J, Kalke, Vikrant R, Lane, Paul J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280361/ https://www.ncbi.nlm.nih.gov/pubmed/37172264 http://dx.doi.org/10.1093/jamia/ocad075 |
Ejemplares similares
-
Implementation frameworks for end-to-end clinical AI: derivation of the SALIENT framework
por: van der Vegt, Anton H, et al.
Publicado: (2023) -
Deploying AI Frameworks on Secure HPC Systems with Containers
por: Vallecorsa, Sofia
Publicado: (2019) -
Cloud2Edge Elastic AI Framework for Prototyping and Deployment of AI Inference Engines in Autonomous Vehicles
por: Grigorescu, Sorin, et al.
Publicado: (2020) -
Salient region detection through salient and non-salient dictionaries
por: Fareed, Mian Muhammad Sadiq, et al.
Publicado: (2019) -
AI blueprints: how to build and deploy AI business projects
por: Eckroth, Joshua
Publicado: (2018)