Cargando…

Dataset construction method of cross-lingual summarization based on filtering and text augmentation

Existing cross-lingual summarization (CLS) datasets consist of inconsistent sample quality and low scale. To address these problems, we propose a method that jointly supervises quality and scale to build CLS datasets. In terms of quality supervision, the method adopts a multi-strategy filtering algo...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Hangyu, Xi, Yaoyi, Wang, Ling, Nan, Yu, Su, Zhizhong, Cao, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280405/
https://www.ncbi.nlm.nih.gov/pubmed/37346668
http://dx.doi.org/10.7717/peerj-cs.1299
Descripción
Sumario:Existing cross-lingual summarization (CLS) datasets consist of inconsistent sample quality and low scale. To address these problems, we propose a method that jointly supervises quality and scale to build CLS datasets. In terms of quality supervision, the method adopts a multi-strategy filtering algorithm to remove low-quality samples of monolingual summarization (MS) from the perspectives of character and semantics, thereby improving the quality of the MS dataset. In terms of scale supervision, the method adopts a text augmentation algorithm based on the pretrained model to increase the size of CLS datasets with quality assurance. This method was used to build an English-Chinese CLS dataset and evaluate it with a reasonable data quality evaluation framework. The evaluation results show that the dataset is of good quality and large size. These outcomes show that the proposed method may comprehensively improve quality and scale, thereby resulting in a high-quality and large-scale CLS dataset at a lower cost.