Cargando…
LazyFox: fast and parallelized overlapping community detection in large graphs
The detection of communities in graph datasets provides insight about a graph’s underlying structure and is an important tool for various domains such as social sciences, marketing, traffic forecast, and drug discovery. While most existing algorithms provide fast approaches for community detection,...
Autores principales: | Garrels, Tim, Khodabakhsh, Athar, Renard, Bernhard Y., Baum, Katharina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280410/ https://www.ncbi.nlm.nih.gov/pubmed/37346513 http://dx.doi.org/10.7717/peerj-cs.1291 |
Ejemplares similares
-
Evaluating graph neural networks under graph sampling scenarios
por: Wei, Qiang, et al.
Publicado: (2022) -
Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN
por: Kandasamy, Venkatachalam, et al.
Publicado: (2022) -
Graph coloring using the reduced quantum genetic algorithm
por: Ardelean, Sebastian Mihai, et al.
Publicado: (2022) -
Knowledge graph augmentation: consistency, immutability, reliability, and context
por: Takan, Savaş
Publicado: (2023) -
Application of graph auto-encoders based on regularization in recommendation algorithms
por: Xie, Chengxin, et al.
Publicado: (2023)