Cargando…
Artificial intelligence-driven malware detection framework for internet of things environment
The Internet of Things (IoT) environment demands a malware detection (MD) framework for protecting sensitive data from unauthorized access. The study intends to develop an image-based MD framework. The authors apply image conversion and enhancement techniques to convert malware binaries into RGB ima...
Autores principales: | Alsubai, Shtwai, Dutta, Ashit Kumar, Alnajim, Abdullah M., Wahab Sait, Abdul rahaman, Ayub, Rashid, AlShehri, Afnan Mushabbab, Ahmad, Naved |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280412/ https://www.ncbi.nlm.nih.gov/pubmed/37346520 http://dx.doi.org/10.7717/peerj-cs.1366 |
Ejemplares similares
-
An Overview of Current Solutions for Privacy in the Internet of Things
por: Yang, Guang
Publicado: (2022) -
Data augmentation based malware detection using convolutional neural networks
por: Catak, Ferhat Ozgur, et al.
Publicado: (2021) -
A Kullback-Liebler divergence-based representation algorithm for malware detection
por: Aboaoja, Faitouri A., et al.
Publicado: (2023) -
FG-Droid: Grouping based feature size reduction for Android malware detection
por: Arslan, Recep Sinan
Publicado: (2022) -
IoT based smart home automation using blockchain and deep learning models
por: Umer, Muhammad, et al.
Publicado: (2023)