Cargando…
DaGzang: a synthetic data generator for cross-domain recommendation services
Research on cross-domain recommendation systems (CDRS) has shown efficiency by leveraging the overlapping associations between domains in order to generate more encompassing user models and better recommendations. Nonetheless, if there is no dataset belonging to a specific domain, it is a challenge...
Autores principales: | Nguyen, Luong Vuong, Vo, Nam D., Jung, Jason J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280434/ https://www.ncbi.nlm.nih.gov/pubmed/37346525 http://dx.doi.org/10.7717/peerj-cs.1360 |
Ejemplares similares
-
Synthetic OCT Data Generation to Enhance the Performance of Diagnostic Models for Neurodegenerative Diseases
por: Danesh, Hajar, et al.
Publicado: (2022) -
Deep Learning Model for Static Ocular Torsion Detection Using Synthetically Generated Fundus Images
por: Wang, Chen, et al.
Publicado: (2023) -
Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments
por: Shi, Jingpu, et al.
Publicado: (2022) -
Developing and Evaluating a University Recommender System
por: Elahi, Mehdi, et al.
Publicado: (2022) -
Users’ Responsiveness to Persuasive Techniques in Recommender Systems
por: Alslaity, Alaa, et al.
Publicado: (2021)