Cargando…
Deep learning and support vector machines for transcription start site identification
Recognizing transcription start sites is key to gene identification. Several approaches have been employed in related problems such as detecting translation initiation sites or promoters, many of the most recent ones based on machine learning. Deep learning methods have been proven to be exceptional...
Autores principales: | Barbero-Aparicio, José A., Olivares-Gil, Alicia, Díez-Pastor, José F., García-Osorio, César |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280436/ https://www.ncbi.nlm.nih.gov/pubmed/37346545 http://dx.doi.org/10.7717/peerj-cs.1340 |
Ejemplares similares
-
Prediction of post-translational modification sites using multiple kernel support vector machine
por: Wang, BingHua, et al.
Publicado: (2017) -
Classification of genomic components and prediction of genes of Begomovirus based on subsequence natural vector and support vector machine
por: Pei, Shaojun, et al.
Publicado: (2020) -
miRBoost: boosting support vector machines for microRNA precursor classification
por: Tran, Van Du T., et al.
Publicado: (2015) -
Nonlinear physics opens a new paradigm for accurate transcription start site prediction
por: Barbero-Aparicio, José Antonio, et al.
Publicado: (2022) -
Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine
por: Kumar, Ravindra, et al.
Publicado: (2017)