Cargando…
Impact of COVID-19 lockdown on air quality analyzed through machine learning techniques
After February 2020, the majority of the world’s governments decided to implement a lockdown in order to limit the spread of the deadly COVID-19 virus. This restriction improved air quality by reducing emissions of particular atmospheric pollutants from industrial and vehicular traffic. In this stud...
Autores principales: | Zukaib, Umer, Maray, Mohammed, Mustafa, Saad, Haq, Nuhman Ul, Khan, Atta ur Rehman, Rehman, Faisal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280446/ https://www.ncbi.nlm.nih.gov/pubmed/37346587 http://dx.doi.org/10.7717/peerj-cs.1270 |
Ejemplares similares
-
Automatic emotion recognition in healthcare data using supervised machine learning
por: Azam, Nazish, et al.
Publicado: (2021) -
Predicting bankruptcy of firms using earnings call data and transfer learning
por: Siddiqui, Hafeez Ur Rehman, et al.
Publicado: (2023) -
Temporal analysis and opinion dynamics of COVID-19 vaccination tweets using diverse feature engineering techniques
por: Ahmed, Shoaib, et al.
Publicado: (2023) -
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
por: Morapedi, Tshepang Duncan, et al.
Publicado: (2023) -
Artificial intelligence assisted acute patient journey
por: Nazir, Talha, et al.
Publicado: (2022)