Cargando…
Augmenting healthy brain magnetic resonance images using generative adversarial networks
Machine learning applications in the medical sector face a lack of medical data due to privacy issues. For instance, brain tumor image-based classification suffers from the lack of brain images. The lack of such images produces some classification problems, i.e., class imbalance issues which can cau...
Autores principales: | Alrumiah, Sarah S., Alrebdi, Norah, Ibrahim, Dina M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280481/ https://www.ncbi.nlm.nih.gov/pubmed/37346635 http://dx.doi.org/10.7717/peerj-cs.1318 |
Ejemplares similares
-
Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss
por: Zhang, Lun, et al.
Publicado: (2022) -
Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images
por: Kazuhiro, Koshino, et al.
Publicado: (2018) -
Enhanced Magnetic Resonance Image Synthesis with Contrast-Aware Generative Adversarial Networks
por: Denck, Jonas, et al.
Publicado: (2021) -
Classification of Alzheimer’s disease stages from magnetic resonance images using deep learning
por: Mora-Rubio, Alejandro, et al.
Publicado: (2023) -
Intraclass Image Augmentation for Defect Detection Using Generative Adversarial Neural Networks
por: Sampath, Vignesh, et al.
Publicado: (2023)