Cargando…

Adaptive sentiment analysis using multioutput classification: a performance comparison

The primary objective of this research is to create a multi-output classification model for sentiment analysis through the combination of 10 algorithms: BernoulliNB, Decision Tree, K-nearest neighbor, Logistic Regression, LinearSVC, Bagging, Stacking, Random Forest, AdaBoost, and ExtraTrees. In doin...

Descripción completa

Detalles Bibliográficos
Autores principales: Hariguna, Taqwa, Ruangkanjanases, Athapol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280487/
https://www.ncbi.nlm.nih.gov/pubmed/37346589
http://dx.doi.org/10.7717/peerj-cs.1378
Descripción
Sumario:The primary objective of this research is to create a multi-output classification model for sentiment analysis through the combination of 10 algorithms: BernoulliNB, Decision Tree, K-nearest neighbor, Logistic Regression, LinearSVC, Bagging, Stacking, Random Forest, AdaBoost, and ExtraTrees. In doing so, we aim to identify the optimal algorithm performance and role within the model. The data utilized in this study is derived from customer reviews of cryptocurrencies in Indonesia. Our results indicate that LinearSVC and Stacking exhibit a high accuracy (90%) compared to the other eight algorithms. The resulting multi-output model demonstrates an average accuracy of 88%, which can be considered satisfactory. This research endeavors to innovate in adaptive sentiment analysis classification by developing a multi-output model that utilizes a combination of 10 classification algorithms.