Cargando…
Adaptive sentiment analysis using multioutput classification: a performance comparison
The primary objective of this research is to create a multi-output classification model for sentiment analysis through the combination of 10 algorithms: BernoulliNB, Decision Tree, K-nearest neighbor, Logistic Regression, LinearSVC, Bagging, Stacking, Random Forest, AdaBoost, and ExtraTrees. In doin...
Autores principales: | Hariguna, Taqwa, Ruangkanjanases, Athapol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280487/ https://www.ncbi.nlm.nih.gov/pubmed/37346589 http://dx.doi.org/10.7717/peerj-cs.1378 |
Ejemplares similares
-
Stock trend prediction using sentiment analysis
por: Xiao, Qianyi, et al.
Publicado: (2023) -
AraCust: a Saudi Telecom Tweets corpus for sentiment analysis
por: Almuqren, Latifah, et al.
Publicado: (2021) -
A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
por: Rekha, KS, et al.
Publicado: (2022) -
Comprehensive sentimental analysis of tweets towards COVID-19 in Pakistan: a study on governmental preventive measures
por: Ali, Muhammad Faisal, et al.
Publicado: (2023) -
Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
por: Krosuri, Lakshmi Revathi, et al.
Publicado: (2023)