Cargando…
Computing tensor Z-eigenpairs via an alternating direction method
Tensor eigenproblems have wide applications in blind source separation, magnetic resonance imaging, and molecular conformation. In this study, we explore an alternating direction method for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order symmetric tensor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280493/ https://www.ncbi.nlm.nih.gov/pubmed/37346506 http://dx.doi.org/10.7717/peerj-cs.1242 |
_version_ | 1785060806277201920 |
---|---|
author | Zhou, Genjiao Wang, Shoushi Huang, Jinhong |
author_facet | Zhou, Genjiao Wang, Shoushi Huang, Jinhong |
author_sort | Zhou, Genjiao |
collection | PubMed |
description | Tensor eigenproblems have wide applications in blind source separation, magnetic resonance imaging, and molecular conformation. In this study, we explore an alternating direction method for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order symmetric tensor. The method decomposes a tensor Z-eigenproblem into a series of matrix eigenproblems that can be readily solved using off-the-shelf matrix eigenvalue algorithms. Our numerical results show that, in most cases, the proposed method converges over two times faster and could determine extreme Z-eigenvalues with 20–50% higher probability than a classical power method-based approach. |
format | Online Article Text |
id | pubmed-10280493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102804932023-06-21 Computing tensor Z-eigenpairs via an alternating direction method Zhou, Genjiao Wang, Shoushi Huang, Jinhong PeerJ Comput Sci Algorithms and Analysis of Algorithms Tensor eigenproblems have wide applications in blind source separation, magnetic resonance imaging, and molecular conformation. In this study, we explore an alternating direction method for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order symmetric tensor. The method decomposes a tensor Z-eigenproblem into a series of matrix eigenproblems that can be readily solved using off-the-shelf matrix eigenvalue algorithms. Our numerical results show that, in most cases, the proposed method converges over two times faster and could determine extreme Z-eigenvalues with 20–50% higher probability than a classical power method-based approach. PeerJ Inc. 2023-02-14 /pmc/articles/PMC10280493/ /pubmed/37346506 http://dx.doi.org/10.7717/peerj-cs.1242 Text en ©2023 Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Algorithms and Analysis of Algorithms Zhou, Genjiao Wang, Shoushi Huang, Jinhong Computing tensor Z-eigenpairs via an alternating direction method |
title | Computing tensor Z-eigenpairs via an alternating direction method |
title_full | Computing tensor Z-eigenpairs via an alternating direction method |
title_fullStr | Computing tensor Z-eigenpairs via an alternating direction method |
title_full_unstemmed | Computing tensor Z-eigenpairs via an alternating direction method |
title_short | Computing tensor Z-eigenpairs via an alternating direction method |
title_sort | computing tensor z-eigenpairs via an alternating direction method |
topic | Algorithms and Analysis of Algorithms |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280493/ https://www.ncbi.nlm.nih.gov/pubmed/37346506 http://dx.doi.org/10.7717/peerj-cs.1242 |
work_keys_str_mv | AT zhougenjiao computingtensorzeigenpairsviaanalternatingdirectionmethod AT wangshoushi computingtensorzeigenpairsviaanalternatingdirectionmethod AT huangjinhong computingtensorzeigenpairsviaanalternatingdirectionmethod |