Cargando…

Computing tensor Z-eigenpairs via an alternating direction method

Tensor eigenproblems have wide applications in blind source separation, magnetic resonance imaging, and molecular conformation. In this study, we explore an alternating direction method for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order symmetric tensor...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Genjiao, Wang, Shoushi, Huang, Jinhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280493/
https://www.ncbi.nlm.nih.gov/pubmed/37346506
http://dx.doi.org/10.7717/peerj-cs.1242
_version_ 1785060806277201920
author Zhou, Genjiao
Wang, Shoushi
Huang, Jinhong
author_facet Zhou, Genjiao
Wang, Shoushi
Huang, Jinhong
author_sort Zhou, Genjiao
collection PubMed
description Tensor eigenproblems have wide applications in blind source separation, magnetic resonance imaging, and molecular conformation. In this study, we explore an alternating direction method for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order symmetric tensor. The method decomposes a tensor Z-eigenproblem into a series of matrix eigenproblems that can be readily solved using off-the-shelf matrix eigenvalue algorithms. Our numerical results show that, in most cases, the proposed method converges over two times faster and could determine extreme Z-eigenvalues with 20–50% higher probability than a classical power method-based approach.
format Online
Article
Text
id pubmed-10280493
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-102804932023-06-21 Computing tensor Z-eigenpairs via an alternating direction method Zhou, Genjiao Wang, Shoushi Huang, Jinhong PeerJ Comput Sci Algorithms and Analysis of Algorithms Tensor eigenproblems have wide applications in blind source separation, magnetic resonance imaging, and molecular conformation. In this study, we explore an alternating direction method for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order symmetric tensor. The method decomposes a tensor Z-eigenproblem into a series of matrix eigenproblems that can be readily solved using off-the-shelf matrix eigenvalue algorithms. Our numerical results show that, in most cases, the proposed method converges over two times faster and could determine extreme Z-eigenvalues with 20–50% higher probability than a classical power method-based approach. PeerJ Inc. 2023-02-14 /pmc/articles/PMC10280493/ /pubmed/37346506 http://dx.doi.org/10.7717/peerj-cs.1242 Text en ©2023 Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Algorithms and Analysis of Algorithms
Zhou, Genjiao
Wang, Shoushi
Huang, Jinhong
Computing tensor Z-eigenpairs via an alternating direction method
title Computing tensor Z-eigenpairs via an alternating direction method
title_full Computing tensor Z-eigenpairs via an alternating direction method
title_fullStr Computing tensor Z-eigenpairs via an alternating direction method
title_full_unstemmed Computing tensor Z-eigenpairs via an alternating direction method
title_short Computing tensor Z-eigenpairs via an alternating direction method
title_sort computing tensor z-eigenpairs via an alternating direction method
topic Algorithms and Analysis of Algorithms
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280493/
https://www.ncbi.nlm.nih.gov/pubmed/37346506
http://dx.doi.org/10.7717/peerj-cs.1242
work_keys_str_mv AT zhougenjiao computingtensorzeigenpairsviaanalternatingdirectionmethod
AT wangshoushi computingtensorzeigenpairsviaanalternatingdirectionmethod
AT huangjinhong computingtensorzeigenpairsviaanalternatingdirectionmethod