Cargando…

Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization

BACKGROUND: In the modern era, Internet-based e-commerce world, consumers express their thoughts on the product or service through ranking and reviews. Sentiment analysis uncovers contextual inferences in user sentiment, assisting the commercial industry and end users in understanding the perception...

Descripción completa

Detalles Bibliográficos
Autores principales: Krosuri, Lakshmi Revathi, Aravapalli, Rama Satish
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280564/
https://www.ncbi.nlm.nih.gov/pubmed/37346605
http://dx.doi.org/10.7717/peerj-cs.1336
_version_ 1785060823462313984
author Krosuri, Lakshmi Revathi
Aravapalli, Rama Satish
author_facet Krosuri, Lakshmi Revathi
Aravapalli, Rama Satish
author_sort Krosuri, Lakshmi Revathi
collection PubMed
description BACKGROUND: In the modern era, Internet-based e-commerce world, consumers express their thoughts on the product or service through ranking and reviews. Sentiment analysis uncovers contextual inferences in user sentiment, assisting the commercial industry and end users in understanding the perception of the product or service. Variations in textual arrangement, complex logic, and sequence length are some of the challenges to accurately forecast the sentiment score of user reviews. Therefore, a novel improvised local search whale optimization improved long short-term memory (LSTM) for feature-level sentiment analysis of online product reviews is proposed in this study. METHODS: The proposed feature-level sentiment analysis method includes ‘data collection’, ‘pre-processing’, ‘feature extraction’, ‘feature selection’, and finally ‘sentiment classification’. First, the product reviews given from different customers are acquired, and then the retrieved data is pre-processed. These pre-processed data go through a feature extraction procedure using a modified inverse class frequency algorithm (LFMI) based on log term frequency. Then the feature is selected via levy flight-based mayfly optimization algorithm (LFMO). At last, the selected data is transformed to the improvised local search whale optimization boosted long short-term memory (ILW-LSTM) model, which categorizes the sentiment of the customer reviews as ‘positive’, ‘negative’, ‘very positive’, ‘very negative’, and ‘neutral’. The ‘Prompt Cloud dataset’ is used for the performance study of the suggested classifiers. Our suggested ILW-LSTM model is put to the test using standard performance evaluation. The primary metrics used to assess our suggested model are ‘accuracy’, ‘recall’, ’precision’, and ‘F1-score’. RESULTS AND CONCLUSION: The proposed ILW-LSTM method provides an accuracy of 97%. In comparison to other leading algorithms, the outcome reveals that the ILW-LSTM model outperformed well in feature-level sentiment classification.
format Online
Article
Text
id pubmed-10280564
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-102805642023-06-21 Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization Krosuri, Lakshmi Revathi Aravapalli, Rama Satish PeerJ Comput Sci Data Mining and Machine Learning BACKGROUND: In the modern era, Internet-based e-commerce world, consumers express their thoughts on the product or service through ranking and reviews. Sentiment analysis uncovers contextual inferences in user sentiment, assisting the commercial industry and end users in understanding the perception of the product or service. Variations in textual arrangement, complex logic, and sequence length are some of the challenges to accurately forecast the sentiment score of user reviews. Therefore, a novel improvised local search whale optimization improved long short-term memory (LSTM) for feature-level sentiment analysis of online product reviews is proposed in this study. METHODS: The proposed feature-level sentiment analysis method includes ‘data collection’, ‘pre-processing’, ‘feature extraction’, ‘feature selection’, and finally ‘sentiment classification’. First, the product reviews given from different customers are acquired, and then the retrieved data is pre-processed. These pre-processed data go through a feature extraction procedure using a modified inverse class frequency algorithm (LFMI) based on log term frequency. Then the feature is selected via levy flight-based mayfly optimization algorithm (LFMO). At last, the selected data is transformed to the improvised local search whale optimization boosted long short-term memory (ILW-LSTM) model, which categorizes the sentiment of the customer reviews as ‘positive’, ‘negative’, ‘very positive’, ‘very negative’, and ‘neutral’. The ‘Prompt Cloud dataset’ is used for the performance study of the suggested classifiers. Our suggested ILW-LSTM model is put to the test using standard performance evaluation. The primary metrics used to assess our suggested model are ‘accuracy’, ‘recall’, ’precision’, and ‘F1-score’. RESULTS AND CONCLUSION: The proposed ILW-LSTM method provides an accuracy of 97%. In comparison to other leading algorithms, the outcome reveals that the ILW-LSTM model outperformed well in feature-level sentiment classification. PeerJ Inc. 2023-04-24 /pmc/articles/PMC10280564/ /pubmed/37346605 http://dx.doi.org/10.7717/peerj-cs.1336 Text en © 2023 Krosuri and Aravapalli https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Data Mining and Machine Learning
Krosuri, Lakshmi Revathi
Aravapalli, Rama Satish
Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
title Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
title_full Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
title_fullStr Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
title_full_unstemmed Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
title_short Feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
title_sort feature level fine grained sentiment analysis using boosted long short-term memory with improvised local search whale optimization
topic Data Mining and Machine Learning
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280564/
https://www.ncbi.nlm.nih.gov/pubmed/37346605
http://dx.doi.org/10.7717/peerj-cs.1336
work_keys_str_mv AT krosurilakshmirevathi featurelevelfinegrainedsentimentanalysisusingboostedlongshorttermmemorywithimprovisedlocalsearchwhaleoptimization
AT aravapalliramasatish featurelevelfinegrainedsentimentanalysisusingboostedlongshorttermmemorywithimprovisedlocalsearchwhaleoptimization