Cargando…
Symbolic expression generation via variational auto-encoder
There are many problems in physics, biology, and other natural sciences in which symbolic regression can provide valuable insights and discover new laws of nature. Widespread deep neural networks do not provide interpretable solutions. Meanwhile, symbolic expressions give us a clear relation between...
Autores principales: | Popov, Sergei, Lazarev, Mikhail, Belavin, Vladislav, Derkach, Denis, Ustyuzhanin, Andrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280571/ https://www.ncbi.nlm.nih.gov/pubmed/37346583 http://dx.doi.org/10.7717/peerj-cs.1241 |
Ejemplares similares
-
Rethinking symbolic and visual context in Referring Expression Generation
por: Schüz, Simeon, et al.
Publicado: (2023) -
NFAD: fixing anomaly detection using normalizing flows
por: Ryzhikov, Artem, et al.
Publicado: (2021) -
Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
por: Balasubramanian, Saravana Balaji, et al.
Publicado: (2022) -
Recursive Metropolis-Hastings naming game: symbol emergence in a multi-agent system based on probabilistic generative models
por: Inukai, Jun, et al.
Publicado: (2023) -
Application of the symbolic regression program AI-Feynman to psychology
por: Miyazaki, Masato, et al.
Publicado: (2023)