Cargando…
Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms
Purity is an important factor of maize seed quality that affects yield, and traditional seed purity identification methods are costly or time-consuming. To achieve rapid and accurate detection of the purity of maize seeds, a method for identifying maize seed varieties, using random subspace integrat...
Autores principales: | Yang, Huan, Wang, Cheng, Zhang, Han, Zhou, Ya’nan, Luo, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280578/ https://www.ncbi.nlm.nih.gov/pubmed/37346683 http://dx.doi.org/10.7717/peerj-cs.1354 |
Ejemplares similares
-
Application of hyperspectral imaging and chemometrics for variety classification of maize seeds
por: Zhao, Yiying, et al.
Publicado: (2018) -
Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds
por: Zhang, Xiaolei, et al.
Publicado: (2012) -
Application of near-infrared hyperspectral imaging to identify a variety of silage maize seeds and common maize seeds
por: Bai, Xiulin, et al.
Publicado: (2020) -
A model for genuineness detection in genetically and phenotypically similar maize variety seeds based on hyperspectral imaging and machine learning
por: Tu, Keling, et al.
Publicado: (2022) -
Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms
por: Wei, Yanlin, et al.
Publicado: (2020)