Cargando…

Graph neural networks for preference social recommendation

Social recommendation aims to improve the performance of recommendation systems with additional social network information. In the state of art, there are two major problems in applying graph neural networks (GNNs) to social recommendation: (i) Social network is connected through social relationship...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Gang-Feng, Yang, Xu-Hua, Tong, Yue, Zhou, Yanbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280625/
https://www.ncbi.nlm.nih.gov/pubmed/37346651
http://dx.doi.org/10.7717/peerj-cs.1393
Descripción
Sumario:Social recommendation aims to improve the performance of recommendation systems with additional social network information. In the state of art, there are two major problems in applying graph neural networks (GNNs) to social recommendation: (i) Social network is connected through social relationships, not item preferences, i.e., there may be connected users with completely different preferences, and (ii) the user representation of current graph neural network layer of social network and user-item interaction network is the output of the mixed user representation of the previous layer, which causes information redundancy. To address the above problems, we propose graph neural networks for preference social recommendation. First, a friend influence indicator is proposed to transform social networks into a new view for describing the similarity of friend preferences. We name the new view the Social Preference Network. Next, we use different GNNs to capture the respective information of the social preference network and the user-item interaction network, which effectively avoids information redundancy. Finally, we use two losses to penalize the unobserved user-item interaction and the unit space vector angle, respectively, to preserve the original connection relationship and widen the distance between positive and negative samples. Experiment results show that the proposed PSR is effective and lightweight for recommendation tasks, especially in dealing with cold-start problems.