Cargando…
A game-theoretic model for the classification of selected oil companies’ price changes
One of the essential properties of a machine learning model is to be able to capture nuanced connections within data. This ability can be enhanced by considering alternative solution concepts, such as those offered by game theory. In this article, the Nash equilibrium is used as a solution concept t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280626/ https://www.ncbi.nlm.nih.gov/pubmed/37346734 http://dx.doi.org/10.7717/peerj-cs.1215 |
_version_ | 1785060838512525312 |
---|---|
author | Lung, Rodica-Ioana Duma, Florin Sebastian |
author_facet | Lung, Rodica-Ioana Duma, Florin Sebastian |
author_sort | Lung, Rodica-Ioana |
collection | PubMed |
description | One of the essential properties of a machine learning model is to be able to capture nuanced connections within data. This ability can be enhanced by considering alternative solution concepts, such as those offered by game theory. In this article, the Nash equilibrium is used as a solution concept to estimate probit parameters for the binary classification problem. A non-cooperative game is proposed in which data variables are players that attempt to maximize their marginal contribution to the log-likelihood function. A differential evolution algorithm is adapted to solve the proposed game. The new method is used to study the price changes of the Romanian oil company, OMV Petrom SA Romania, relative to the price of oil (crude and Brent) and the evolution of two other major oil companies with influence in the region. Results show that the proposed method outperforms the baseline probit and classical classification approaches in predicting price changes. |
format | Online Article Text |
id | pubmed-10280626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102806262023-06-21 A game-theoretic model for the classification of selected oil companies’ price changes Lung, Rodica-Ioana Duma, Florin Sebastian PeerJ Comput Sci Data Mining and Machine Learning One of the essential properties of a machine learning model is to be able to capture nuanced connections within data. This ability can be enhanced by considering alternative solution concepts, such as those offered by game theory. In this article, the Nash equilibrium is used as a solution concept to estimate probit parameters for the binary classification problem. A non-cooperative game is proposed in which data variables are players that attempt to maximize their marginal contribution to the log-likelihood function. A differential evolution algorithm is adapted to solve the proposed game. The new method is used to study the price changes of the Romanian oil company, OMV Petrom SA Romania, relative to the price of oil (crude and Brent) and the evolution of two other major oil companies with influence in the region. Results show that the proposed method outperforms the baseline probit and classical classification approaches in predicting price changes. PeerJ Inc. 2023-01-25 /pmc/articles/PMC10280626/ /pubmed/37346734 http://dx.doi.org/10.7717/peerj-cs.1215 Text en © 2023 Lung and Duma https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Data Mining and Machine Learning Lung, Rodica-Ioana Duma, Florin Sebastian A game-theoretic model for the classification of selected oil companies’ price changes |
title | A game-theoretic model for the classification of selected oil companies’ price changes |
title_full | A game-theoretic model for the classification of selected oil companies’ price changes |
title_fullStr | A game-theoretic model for the classification of selected oil companies’ price changes |
title_full_unstemmed | A game-theoretic model for the classification of selected oil companies’ price changes |
title_short | A game-theoretic model for the classification of selected oil companies’ price changes |
title_sort | game-theoretic model for the classification of selected oil companies’ price changes |
topic | Data Mining and Machine Learning |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280626/ https://www.ncbi.nlm.nih.gov/pubmed/37346734 http://dx.doi.org/10.7717/peerj-cs.1215 |
work_keys_str_mv | AT lungrodicaioana agametheoreticmodelfortheclassificationofselectedoilcompaniespricechanges AT dumaflorinsebastian agametheoreticmodelfortheclassificationofselectedoilcompaniespricechanges AT lungrodicaioana gametheoreticmodelfortheclassificationofselectedoilcompaniespricechanges AT dumaflorinsebastian gametheoreticmodelfortheclassificationofselectedoilcompaniespricechanges |