Cargando…
A robust maximum correntropy forecasting model for time series with outliers
It is of great significance to develop a robust forecasting method for time series. The reliability and accuracy of the traditional model are reduced because the series is polluted by outliers. The present study proposes a robust maximum correntropy autoregressive (MCAR) forecasting model by examini...
Autores principales: | Ren, Jing, Li, Wei-Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280630/ https://www.ncbi.nlm.nih.gov/pubmed/37346501 http://dx.doi.org/10.7717/peerj-cs.1251 |
Ejemplares similares
-
A hybrid model of modal decomposition and gated recurrent units for short-term load forecasting
por: Wang, Chun-Hua, et al.
Publicado: (2023) -
Effective short-term forecasts of Saudi stock price trends using technical indicators and large-scale multivariate time series
por: Aseeri, Ahmad O.
Publicado: (2023) -
Robust subspace methods for outlier detection in genomic data circumvents the curse of dimensionality
por: Shetta, Omar, et al.
Publicado: (2020) -
Graph Neural Networks for Maximum Constraint Satisfaction
por: Tönshoff, Jan, et al.
Publicado: (2021) -
Forecasting and Evaluating Multiple Interventions for COVID-19 Worldwide
por: Hu, Zixin, et al.
Publicado: (2020)