Cargando…
A multi-kernel and multi-scale learning based deep ensemble model for predicting recurrence of non-small cell lung cancer
Predicting recurrence in patients with non-small cell lung cancer (NSCLC) before treatment is vital for guiding personalized medicine. Deep learning techniques have revolutionized the application of cancer informatics, including lung cancer time-to-event prediction. Most existing convolutional neura...
Autores principales: | Kim, Gihyeon, Park, Young Mi, Yoon, Hyun Jung, Choi, Jang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280639/ https://www.ncbi.nlm.nih.gov/pubmed/37346527 http://dx.doi.org/10.7717/peerj-cs.1311 |
Ejemplares similares
-
Deep Learning with Multimodal Integration for Predicting Recurrence in Patients with Non-Small Cell Lung Cancer
por: Kim, Gihyeon, et al.
Publicado: (2022) -
Fourier Ring Correlation and Anisotropic Kernel Density Estimation Improve Deep Learning Based SMLM Reconstruction of Microtubules
por: Berberich, Andreas, et al.
Publicado: (2021) -
DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion
por: Cao, Ruifen, et al.
Publicado: (2021) -
ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19
por: Chowdhury, Nihad Karim, et al.
Publicado: (2021) -
MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks
por: Wani, Nisar, et al.
Publicado: (2021)