Cargando…
TbsNet: the importance of thin-branch structures in CNNs
The performance of a convolutional neural network (CNN) model is influenced by several factors, such as depth, width, network structure, size of the receptive field, and feature map scaling. The optimization of the best combination of these factors poses as the main difficulty in designing a viable...
Autores principales: | Hu, Xiujian, Sheng, Guanglei, Shi, Piao, Ding, Yuanyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280644/ https://www.ncbi.nlm.nih.gov/pubmed/37346637 http://dx.doi.org/10.7717/peerj-cs.1429 |
Ejemplares similares
-
A novel residual block: replace Conv1× 1 with Conv3×3 and stack more convolutions
por: Hu, XiuJian, et al.
Publicado: (2023) -
GaborNet: investigating the importance of color space, scale and orientation for image classification
por: Rimiru, Richard M., et al.
Publicado: (2022) -
PlaneNet: an efficient local feature extraction network
por: Lin, Bin, et al.
Publicado: (2021) -
Petri Net based modeling and analysis for improved resource utilization in cloud computing
por: Rizwan Ali, Muhammad, et al.
Publicado: (2021) -
Improved MobileNetV2 crop disease identification model for intelligent agriculture
por: Lu, Jianbo, et al.
Publicado: (2023)