Cargando…

Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation

In the field of artificial intelligence (AI) one of the main challenges today is to make the knowledge acquired when performing a certain task in a given scenario applicable to similar yet different tasks to be performed with a certain degree of precision in other environments. This idea of knowledg...

Descripción completa

Detalles Bibliográficos
Autores principales: Barreiro, José M., Lara, Juan A., Manrique, Daniel, Smith, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280651/
https://www.ncbi.nlm.nih.gov/pubmed/37346523
http://dx.doi.org/10.7717/peerj-cs.1402
_version_ 1785060844590071808
author Barreiro, José M.
Lara, Juan A.
Manrique, Daniel
Smith, Peter
author_facet Barreiro, José M.
Lara, Juan A.
Manrique, Daniel
Smith, Peter
author_sort Barreiro, José M.
collection PubMed
description In the field of artificial intelligence (AI) one of the main challenges today is to make the knowledge acquired when performing a certain task in a given scenario applicable to similar yet different tasks to be performed with a certain degree of precision in other environments. This idea of knowledge portability is of great use in Cyber-Physical Systems (CPS) that face important challenges in terms of reliability and autonomy. This article presents a CPS where unmanned vehicles (drones) are equipped with a reinforcement learning system so they may automatically learn to perform various navigation tasks in environments with physical obstacles. The implemented system is capable of isolating the agents’ knowledge and transferring it to other agents that do not have prior knowledge of their environment so they may successfully navigate environments with obstacles. A complete study has been performed to ascertain the degree to which the knowledge obtained by an agent in a scenario may be successfully transferred to other agents in order to perform tasks in other scenarios without prior knowledge of the same, obtaining positive results in terms of the success rate and learning time required to complete the task set in each case. In particular, those two indicators showed better results (higher success rate and lower learning time) with our proposal compared to the baseline in 47 out of the 60 tests conducted (78.3%).
format Online
Article
Text
id pubmed-10280651
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-102806512023-06-21 Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation Barreiro, José M. Lara, Juan A. Manrique, Daniel Smith, Peter PeerJ Comput Sci Artificial Intelligence In the field of artificial intelligence (AI) one of the main challenges today is to make the knowledge acquired when performing a certain task in a given scenario applicable to similar yet different tasks to be performed with a certain degree of precision in other environments. This idea of knowledge portability is of great use in Cyber-Physical Systems (CPS) that face important challenges in terms of reliability and autonomy. This article presents a CPS where unmanned vehicles (drones) are equipped with a reinforcement learning system so they may automatically learn to perform various navigation tasks in environments with physical obstacles. The implemented system is capable of isolating the agents’ knowledge and transferring it to other agents that do not have prior knowledge of their environment so they may successfully navigate environments with obstacles. A complete study has been performed to ascertain the degree to which the knowledge obtained by an agent in a scenario may be successfully transferred to other agents in order to perform tasks in other scenarios without prior knowledge of the same, obtaining positive results in terms of the success rate and learning time required to complete the task set in each case. In particular, those two indicators showed better results (higher success rate and lower learning time) with our proposal compared to the baseline in 47 out of the 60 tests conducted (78.3%). PeerJ Inc. 2023-05-19 /pmc/articles/PMC10280651/ /pubmed/37346523 http://dx.doi.org/10.7717/peerj-cs.1402 Text en ©2023 Barreiro et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Artificial Intelligence
Barreiro, José M.
Lara, Juan A.
Manrique, Daniel
Smith, Peter
Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
title Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
title_full Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
title_fullStr Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
title_full_unstemmed Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
title_short Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
title_sort towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
topic Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280651/
https://www.ncbi.nlm.nih.gov/pubmed/37346523
http://dx.doi.org/10.7717/peerj-cs.1402
work_keys_str_mv AT barreirojosem towardstheportabilityofknowledgeinreinforcementlearningbasedsystemsforautomaticdronenavigation
AT larajuana towardstheportabilityofknowledgeinreinforcementlearningbasedsystemsforautomaticdronenavigation
AT manriquedaniel towardstheportabilityofknowledgeinreinforcementlearningbasedsystemsforautomaticdronenavigation
AT smithpeter towardstheportabilityofknowledgeinreinforcementlearningbasedsystemsforautomaticdronenavigation