Cargando…
Genome-wide identification and expression analysis of VQ gene family under abiotic stress in Coix lacryma-jobi L.
BACKGROUND: Valine-glutamine (VQ) proteins are non-specific plant proteins that have a highly conserved motif: FxxhVQxhTG. These proteins are involved in the development of various plant organs such as seeds, hypocotyls, flowers, leaves and also play a role in response to salt, drought and cold stre...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280849/ https://www.ncbi.nlm.nih.gov/pubmed/37340442 http://dx.doi.org/10.1186/s12870-023-04294-9 |
Sumario: | BACKGROUND: Valine-glutamine (VQ) proteins are non-specific plant proteins that have a highly conserved motif: FxxhVQxhTG. These proteins are involved in the development of various plant organs such as seeds, hypocotyls, flowers, leaves and also play a role in response to salt, drought and cold stresses. Despite their importance, there is limited information available on the evolutionary and structural characteristics of VQ family genes in Coix lacryma-jobi. RESULTS: In this study, a total of 31 VQ genes were identified from the coix genome and classified into seven subgroups (I–VII) based on phylogenetic analysis. These genes were found to be unevenly distributed on 10 chromosomes. Gene structure analysis revealed that these genes had a similar type of structure within each subfamily. Moreover, 27 of ClVQ genes were found to have no introns. Conserved domain and multiple sequence alignment analysis revealed the presence of a highly conserved sequences in the ClVQ protein. This research utilized quantitative real-time PCR (qRT-PCR) and promoter analysis to investigate the expression of ClVQ genes under different stress conditions. Results showed that most ClVQ genes responded to polyethylene glycol, heat treatment, salt, abscisic acid and methyl jasmonate treatment with varying degrees of expression. Furthermore, some ClVQ genes exhibited significant correlation in expression changes under abiotic stress, indicating that these genes may act synergistically in response to adversarial stress. Additionally, yeast dihybrid verification revealed an interaction between ClVQ4, ClVQ12, and ClVQ26. CONCLUSIONS: This study conducted a genome-wide analysis of the VQ gene family in coix, including an examination of phylogenetic relationships, conserved domains, cis-elements and expression patterns. The goal of the study was to identify potential drought resistance candidate genes, providing a theoretical foundation for molecular resistance breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-023-04294-9. |
---|