Cargando…
Use and misuse of random forest variable importance metrics in medicine: demonstrations through incident stroke prediction
BACKGROUND: Machine learning tools such as random forests provide important opportunities for modeling large, complex modern data generated in medicine. Unfortunately, when it comes to understanding why machine learning models are predictive, applied research continues to rely on ‘out of bag’ (OOB)...
Autores principales: | Wallace, Meredith L., Mentch, Lucas, Wheeler, Bradley J., Tapia, Amanda L., Richards, Marc, Zhou, Siyu, Yi, Lixia, Redline, Susan, Buysse, Daniel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280951/ https://www.ncbi.nlm.nih.gov/pubmed/37337173 http://dx.doi.org/10.1186/s12874-023-01965-x |
Ejemplares similares
-
Conditional variable importance for random forests
por: Strobl, Carolin, et al.
Publicado: (2008) -
Exploitation of surrogate variables in random forests for unbiased analysis of mutual impact and importance of features
por: Voges, Lucas F, et al.
Publicado: (2023) -
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Surrogate minimal depth as an importance measure for variables in random forests
por: Seifert, Stephan, et al.
Publicado: (2019) -
Substance Misuse Education for Physicians: Why Older People are Important
por: De Jong, Cornelis A.J., et al.
Publicado: (2016)