Cargando…
Risk factor analysis and multiple predictive machine learning models for mortality in COVID-19: a multicenter and multi-ethnic cohort study
BACKGROUND: The COVID-19 pandemic presents a significant challenge to the global healthcare system. Implementing timely, accurate, and cost-effective screening approaches is crucial in preventing infections and saving lives by guiding disease management. OBJECTIVES: The study aimed to use machine le...
Autores principales: | Shi, Yuchen, Qin, Yanwen, Zheng, Ze, Wang, Ping, Liu, Jinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281034/ http://dx.doi.org/10.1016/j.jemermed.2023.06.012 |
Ejemplares similares
-
Development and validation of a predicted nomogram for mortality of COVID-19: a multicenter retrospective cohort study of 4,711 cases in multiethnic
por: Shi, Yuchen, et al.
Publicado: (2023) -
Machine learning techniques for mortality prediction in emergency departments: a systematic review
por: Naemi, Amin, et al.
Publicado: (2021) -
Machine Learning and Precision Medicine in Emergency Medicine: The Basics
por: Lee, Sangil, et al.
Publicado: (2021) -
Machine learning models predicting undertriage in telephone triage
por: Inokuchi, Ryota, et al.
Publicado: (2022) -
Training machine learning models to predict 30-day mortality in patients discharged from the emergency department: a retrospective, population-based registry study
por: Blom, Mathias Carl, et al.
Publicado: (2019)