Cargando…

Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC

BACKGROUND: Coronavirus disease 2019 (COVID‐19) is a highly contagious respiratory disease that has posed a serious threat to people’s daily lives and caused an unprecedented challenge to public health and people’s health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malign...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Wen-yu, Jiao, Xin, Song, Wen-xin, Wu, Peng, Xiao, Pei-qi, Huang, Xiu-fang, Wang, Kai, Zhan, Shao-feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281056/
https://www.ncbi.nlm.nih.gov/pubmed/37347115
http://dx.doi.org/10.3389/fendo.2023.1187882
_version_ 1785060931144777728
author Wu, Wen-yu
Jiao, Xin
Song, Wen-xin
Wu, Peng
Xiao, Pei-qi
Huang, Xiu-fang
Wang, Kai
Zhan, Shao-feng
author_facet Wu, Wen-yu
Jiao, Xin
Song, Wen-xin
Wu, Peng
Xiao, Pei-qi
Huang, Xiu-fang
Wang, Kai
Zhan, Shao-feng
author_sort Wu, Wen-yu
collection PubMed
description BACKGROUND: Coronavirus disease 2019 (COVID‐19) is a highly contagious respiratory disease that has posed a serious threat to people’s daily lives and caused an unprecedented challenge to public health and people’s health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. METHODS: LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. RESULTS: We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. CONCLUSION: We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19.
format Online
Article
Text
id pubmed-10281056
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102810562023-06-21 Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC Wu, Wen-yu Jiao, Xin Song, Wen-xin Wu, Peng Xiao, Pei-qi Huang, Xiu-fang Wang, Kai Zhan, Shao-feng Front Endocrinol (Lausanne) Endocrinology BACKGROUND: Coronavirus disease 2019 (COVID‐19) is a highly contagious respiratory disease that has posed a serious threat to people’s daily lives and caused an unprecedented challenge to public health and people’s health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. METHODS: LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. RESULTS: We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. CONCLUSION: We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19. Frontiers Media S.A. 2023-06-06 /pmc/articles/PMC10281056/ /pubmed/37347115 http://dx.doi.org/10.3389/fendo.2023.1187882 Text en Copyright © 2023 Wu, Jiao, Song, Wu, Xiao, Huang, Wang and Zhan https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Endocrinology
Wu, Wen-yu
Jiao, Xin
Song, Wen-xin
Wu, Peng
Xiao, Pei-qi
Huang, Xiu-fang
Wang, Kai
Zhan, Shao-feng
Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
title Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
title_full Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
title_fullStr Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
title_full_unstemmed Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
title_short Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC
title_sort network pharmacology and bioinformatics analysis identifies potential therapeutic targets of naringenin against covid-19/lusc
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281056/
https://www.ncbi.nlm.nih.gov/pubmed/37347115
http://dx.doi.org/10.3389/fendo.2023.1187882
work_keys_str_mv AT wuwenyu networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT jiaoxin networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT songwenxin networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT wupeng networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT xiaopeiqi networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT huangxiufang networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT wangkai networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc
AT zhanshaofeng networkpharmacologyandbioinformaticsanalysisidentifiespotentialtherapeutictargetsofnaringeninagainstcovid19lusc