Cargando…
Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
Objective: to analyze the characteristics of seriously ill elderly patients during the six waves of the COVID-19 pandemic. Method: retrospective, observational and analytical study of patients over 70 years of age admitted to the ICU (March-2020 – March-2022). Patients were categorized into 3 groups...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SEGG. Published by Elsevier España, S.L.U.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281214/ https://www.ncbi.nlm.nih.gov/pubmed/37451199 http://dx.doi.org/10.1016/j.regg.2023.101377 |
_version_ | 1785060963974643712 |
---|---|
author | González-Castro, Alejandro Cuenca-Fito, Elena Peñasco, Yhivian Fernandez, Alba Marín, Carmen Huertas Dierssen-Soto, Trinidad Ferrero-Franco, Raquel Rodríguez-Borregán, Juan Carlos |
author_facet | González-Castro, Alejandro Cuenca-Fito, Elena Peñasco, Yhivian Fernandez, Alba Marín, Carmen Huertas Dierssen-Soto, Trinidad Ferrero-Franco, Raquel Rodríguez-Borregán, Juan Carlos |
author_sort | González-Castro, Alejandro |
collection | PubMed |
description | Objective: to analyze the characteristics of seriously ill elderly patients during the six waves of the COVID-19 pandemic. Method: retrospective, observational and analytical study of patients over 70 years of age admitted to the ICU (March-2020 – March-2022). Patients were categorized into 3 groups based on age: 70-74 years; 75-79 years; and > 80 years. A descriptive and comparative analysis of the sample was initially performed; and a 28-, 60- and 90-day survival analysis using the Kaplan-Meier method. Multivariate survival analysis was performed by fitting a Cox model. Results: of 301 patients, the lowest number of admissions occurred during the first wave (20 (6%)), compared to the wave with the highest number of admissions: the sixth wave (76 (25%)). The survival curves at 28, 60 days and 90 days showed a higher probability of survival in the younger age groups (p<0.01 and p=0.01 respectively). Troponin at admission (per unit, ng/L) showed a significant association with 28- and 60-day mortality (HR: 1.00; CI95%: 1.00-1.01; p<0.05). Taking the 1st wave of the pandemic as a reference, admission in the 3rd wave behaved as a protective factor against mortality at 28 and 60 days of follow-up (HR: 0.18; CI95%: 0.02-0.64; p<0.05; HR: 0.13; CI95%: 0.02-0.64; p<0.05 respectively). Conclusions: the time of admission and biomarkers, such as troponin, constitute prognostic markers independent of age in the elderly population. |
format | Online Article Text |
id | pubmed-10281214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SEGG. Published by Elsevier España, S.L.U. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102812142023-06-21 Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica González-Castro, Alejandro Cuenca-Fito, Elena Peñasco, Yhivian Fernandez, Alba Marín, Carmen Huertas Dierssen-Soto, Trinidad Ferrero-Franco, Raquel Rodríguez-Borregán, Juan Carlos Rev Esp Geriatr Gerontol Article Objective: to analyze the characteristics of seriously ill elderly patients during the six waves of the COVID-19 pandemic. Method: retrospective, observational and analytical study of patients over 70 years of age admitted to the ICU (March-2020 – March-2022). Patients were categorized into 3 groups based on age: 70-74 years; 75-79 years; and > 80 years. A descriptive and comparative analysis of the sample was initially performed; and a 28-, 60- and 90-day survival analysis using the Kaplan-Meier method. Multivariate survival analysis was performed by fitting a Cox model. Results: of 301 patients, the lowest number of admissions occurred during the first wave (20 (6%)), compared to the wave with the highest number of admissions: the sixth wave (76 (25%)). The survival curves at 28, 60 days and 90 days showed a higher probability of survival in the younger age groups (p<0.01 and p=0.01 respectively). Troponin at admission (per unit, ng/L) showed a significant association with 28- and 60-day mortality (HR: 1.00; CI95%: 1.00-1.01; p<0.05). Taking the 1st wave of the pandemic as a reference, admission in the 3rd wave behaved as a protective factor against mortality at 28 and 60 days of follow-up (HR: 0.18; CI95%: 0.02-0.64; p<0.05; HR: 0.13; CI95%: 0.02-0.64; p<0.05 respectively). Conclusions: the time of admission and biomarkers, such as troponin, constitute prognostic markers independent of age in the elderly population. SEGG. Published by Elsevier España, S.L.U. 2023-06-20 /pmc/articles/PMC10281214/ /pubmed/37451199 http://dx.doi.org/10.1016/j.regg.2023.101377 Text en © 2023 SEGG. Published by Elsevier España, S.L.U. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article González-Castro, Alejandro Cuenca-Fito, Elena Peñasco, Yhivian Fernandez, Alba Marín, Carmen Huertas Dierssen-Soto, Trinidad Ferrero-Franco, Raquel Rodríguez-Borregán, Juan Carlos Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica |
title | Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica |
title_full | Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica |
title_fullStr | Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica |
title_full_unstemmed | Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica |
title_short | Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica |
title_sort | análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por sars-cov-2: implicaciones para la atención médica |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281214/ https://www.ncbi.nlm.nih.gov/pubmed/37451199 http://dx.doi.org/10.1016/j.regg.2023.101377 |
work_keys_str_mv | AT gonzalezcastroalejandro analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT cuencafitoelena analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT penascoyhivian analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT fernandezalba analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT marincarmenhuertas analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT dierssensototrinidad analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT ferrerofrancoraquel analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica AT rodriguezborreganjuancarlos analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica |