Cargando…

Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica

Objective: to analyze the characteristics of seriously ill elderly patients during the six waves of the COVID-19 pandemic. Method: retrospective, observational and analytical study of patients over 70 years of age admitted to the ICU (March-2020 – March-2022). Patients were categorized into 3 groups...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Castro, Alejandro, Cuenca-Fito, Elena, Peñasco, Yhivian, Fernandez, Alba, Marín, Carmen Huertas, Dierssen-Soto, Trinidad, Ferrero-Franco, Raquel, Rodríguez-Borregán, Juan Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SEGG. Published by Elsevier España, S.L.U. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281214/
https://www.ncbi.nlm.nih.gov/pubmed/37451199
http://dx.doi.org/10.1016/j.regg.2023.101377
_version_ 1785060963974643712
author González-Castro, Alejandro
Cuenca-Fito, Elena
Peñasco, Yhivian
Fernandez, Alba
Marín, Carmen Huertas
Dierssen-Soto, Trinidad
Ferrero-Franco, Raquel
Rodríguez-Borregán, Juan Carlos
author_facet González-Castro, Alejandro
Cuenca-Fito, Elena
Peñasco, Yhivian
Fernandez, Alba
Marín, Carmen Huertas
Dierssen-Soto, Trinidad
Ferrero-Franco, Raquel
Rodríguez-Borregán, Juan Carlos
author_sort González-Castro, Alejandro
collection PubMed
description Objective: to analyze the characteristics of seriously ill elderly patients during the six waves of the COVID-19 pandemic. Method: retrospective, observational and analytical study of patients over 70 years of age admitted to the ICU (March-2020 – March-2022). Patients were categorized into 3 groups based on age: 70-74 years; 75-79 years; and > 80 years. A descriptive and comparative analysis of the sample was initially performed; and a 28-, 60- and 90-day survival analysis using the Kaplan-Meier method. Multivariate survival analysis was performed by fitting a Cox model. Results: of 301 patients, the lowest number of admissions occurred during the first wave (20 (6%)), compared to the wave with the highest number of admissions: the sixth wave (76 (25%)). The survival curves at 28, 60 days and 90 days showed a higher probability of survival in the younger age groups (p<0.01 and p=0.01 respectively). Troponin at admission (per unit, ng/L) showed a significant association with 28- and 60-day mortality (HR: 1.00; CI95%: 1.00-1.01; p<0.05). Taking the 1st wave of the pandemic as a reference, admission in the 3rd wave behaved as a protective factor against mortality at 28 and 60 days of follow-up (HR: 0.18; CI95%: 0.02-0.64; p<0.05; HR: 0.13; CI95%: 0.02-0.64; p<0.05 respectively). Conclusions: the time of admission and biomarkers, such as troponin, constitute prognostic markers independent of age in the elderly population.
format Online
Article
Text
id pubmed-10281214
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SEGG. Published by Elsevier España, S.L.U.
record_format MEDLINE/PubMed
spelling pubmed-102812142023-06-21 Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica González-Castro, Alejandro Cuenca-Fito, Elena Peñasco, Yhivian Fernandez, Alba Marín, Carmen Huertas Dierssen-Soto, Trinidad Ferrero-Franco, Raquel Rodríguez-Borregán, Juan Carlos Rev Esp Geriatr Gerontol Article Objective: to analyze the characteristics of seriously ill elderly patients during the six waves of the COVID-19 pandemic. Method: retrospective, observational and analytical study of patients over 70 years of age admitted to the ICU (March-2020 – March-2022). Patients were categorized into 3 groups based on age: 70-74 years; 75-79 years; and > 80 years. A descriptive and comparative analysis of the sample was initially performed; and a 28-, 60- and 90-day survival analysis using the Kaplan-Meier method. Multivariate survival analysis was performed by fitting a Cox model. Results: of 301 patients, the lowest number of admissions occurred during the first wave (20 (6%)), compared to the wave with the highest number of admissions: the sixth wave (76 (25%)). The survival curves at 28, 60 days and 90 days showed a higher probability of survival in the younger age groups (p<0.01 and p=0.01 respectively). Troponin at admission (per unit, ng/L) showed a significant association with 28- and 60-day mortality (HR: 1.00; CI95%: 1.00-1.01; p<0.05). Taking the 1st wave of the pandemic as a reference, admission in the 3rd wave behaved as a protective factor against mortality at 28 and 60 days of follow-up (HR: 0.18; CI95%: 0.02-0.64; p<0.05; HR: 0.13; CI95%: 0.02-0.64; p<0.05 respectively). Conclusions: the time of admission and biomarkers, such as troponin, constitute prognostic markers independent of age in the elderly population. SEGG. Published by Elsevier España, S.L.U. 2023-06-20 /pmc/articles/PMC10281214/ /pubmed/37451199 http://dx.doi.org/10.1016/j.regg.2023.101377 Text en © 2023 SEGG. Published by Elsevier España, S.L.U. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
González-Castro, Alejandro
Cuenca-Fito, Elena
Peñasco, Yhivian
Fernandez, Alba
Marín, Carmen Huertas
Dierssen-Soto, Trinidad
Ferrero-Franco, Raquel
Rodríguez-Borregán, Juan Carlos
Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
title Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
title_full Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
title_fullStr Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
title_full_unstemmed Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
title_short Análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por SARS-CoV-2: implicaciones para la atención médica
title_sort análisis de las características de los pacientes mayores que ingresaron en una unidad de cuidados intensivos durante las seis olas de la pandemia por sars-cov-2: implicaciones para la atención médica
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281214/
https://www.ncbi.nlm.nih.gov/pubmed/37451199
http://dx.doi.org/10.1016/j.regg.2023.101377
work_keys_str_mv AT gonzalezcastroalejandro analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT cuencafitoelena analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT penascoyhivian analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT fernandezalba analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT marincarmenhuertas analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT dierssensototrinidad analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT ferrerofrancoraquel analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica
AT rodriguezborreganjuancarlos analisisdelascaracteristicasdelospacientesmayoresqueingresaronenunaunidaddecuidadosintensivosdurantelasseisolasdelapandemiaporsarscov2implicacionesparalaatencionmedica